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Before You Begin

Installing PLECS Standalone

Installing PLECS on your system is easy. You do not need to have system ad-
ministrator permissions.

Installation on Microsoft Windows

1 If you already have a license file *.lic, copy it to your harddisk.

2 Run the installer executable by double-clicking it. PLECS can be installed for
the current user or all users of a machine. To install PLECS for all users the
installer must be executed with administrator privileges.

3 Start PLECS.

Installation on macOS

1 If you already have a license file *.lic, copy it to your harddisk.

2 Open the disk image by double-clicking it.

3 Copy PLECS to the Application folder.

4 Start PLECS.

Installation on Linux

1 If you already have a license file *.lic, copy it to your harddisk.
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2 Open a terminal and extract the package
plecs-standalone-x-y-z_linux64.tar.gz by entering the command

tar xf plecs-standalone-x-y-z_linux64.tar.gz

in a directory of your choice. This will create a new sub-directory named
plecs containing the required files.

3 Start PLECS by executing PLECS in the folder plecs.

Licensing

If PLECS cannot locate any license file when you start it, it will show a mes-
sage that it is unlicensed.

Choose Start in demo mode to use PLECS in a restricted demo mode that lets
you build models and run simulations. Saving models or data is disabled in this
mode.

Choose Open license manager... to open the License Manager, which lets you
install a license file or request a time-limited trial or student license.

If PLECS does locate license files but they do not contain a valid license (e.g.
because it has expired), it will immediately open the License Manager without
the option to start the demo mode.
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Installing PLECS Blockset

Installing PLECS Blockset on your computer is easy. You do not need to have
system administrator permissions. Since PLECS Blockset requires MATLAB
and Simulink make sure these programs are installed on your computer.

Installation on Microsoft Windows

1 If you already have a license file *.lic, copy it to your harddisk.

2 Run the installer executable by double-clicking it. PLECS can be installed for
the current user or all users of a machine. To install PLECS for all users the
installer must be executed with administrator privileges.

3 After the installer has finished, it will automatically start the PLECS
Blockset Installation Wizard.

4 On the License File page you can choose to keep an existing license file,
copy a new license file from your harddisk or request a trial or student li-
cense.

5 Review the MATLAB Search Path page and click Continue.

6 Start MATLAB and enter plecslib or choose the entry PLECS in the
Simulink Library Browser to open the PLECS Library.

Installation on macOS

1 If you already have a license file *.lic, copy it to your harddisk.

2 Open the diskimage by double-clicking it and copy the folder
PLECS Blockset x.y to a location of your choice.

3 Run the application PLECS.app inside the folder PLECS Blockset x.y by
double-clicking it. This will start the PLECS Blockset Installation Wiz-
ard.

4 On the License File page you can choose to keep an existing license file,
copy a new license file from your harddisk or request a trial or student li-
cense.

5 Review the MATLAB Search Path page and click Continue.
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6 Start MATLAB and enter plecslib or choose the entry PLECS in the
Simulink Library Browser to open the PLECS Library.

Installation on Linux

1 If you already have a license file *.lic, copy it to your harddisk.

2 Open a terminal and extract the package
plecs-blockset-x-y-z_linux64.tar.gz by entering the command

tar xf plecs-blockset-x-y-z_linux64.tar.gz

in a directory of your choice.

3 Still within the terminal execute the program PLECS.setup inside the folder
plecs/bin/glnxa64. This will start the PLECS Blockset Installation Wiz-
ard.

4 On the License File page you can choose to keep an existing license file,
copy a new license file from your harddisk or request a trial or student li-
cense.

5 Review the MATLAB Search Path page and click Continue.

6 Start MATLAB and enter plecslib or choose the entry PLECS in the
Simulink Library Browser to open the PLECS Library.

Licensing

If PLECS cannot locate any license file when you start it, it will show a mes-
sage that it is unlicensed.

Choose Start in demo mode to use PLECS in a restricted demo mode that
lets you build models and run simulations. Saving Simulink models containing
PLECS blocks is disabled in this mode.

Choose Open license manager... to open the License Manager, which lets you
install a license file or request a time-limited trial or student license.

If PLECS does locate license files but they do not contain a valid license (e.g.
because it has expired), it will immediately open the License Manager without
the option to start the demo mode.
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Without a valid license you will still be able to open or save Simulink models
containing PLECS blocks. However, you cannot modify a circuit schematic or
run a simulation.

Note PLECS scans the license file only once when the module is loaded
by MATLAB. Therefore, if you reinstall the license file, you need to clear the
PLECS module before the changes can become effective. You can do this by en-
tering plecsclear at the MATLAB command prompt.

Configuring the MATLAB Search Path

The recommended method to register PLECS Blockset with MATLAB is to add
appropriate addpath commands to the startup file startup.m in your MATLAB
startup folder. For information on the startup.m file, enter doc startup in
MATLAB. The PLECS Blockset Installation Wizard will assist you in cre-
ating or updating this file.

Using this method has the advantage that if you update MATLAB after hav-
ing installed PLECS, the new MATLAB version will automatically know about
PLECS. The disadvantage is that each user must setup their startup file indi-
vidually.

As an alternative method you can register PLECS with a specific MATLAB
installation using the MATLAB Path Browser or by directly editing the file
pathdef.m in the directory matlabroot/toolbox/local/. This method may be
appropriate if PLECS will be used by multiple users sharing the same com-
puter. You need to add the PLECS directory and its subdirectory demos to the
MATLAB search path.

Configuring PLECS

For information about setting global configuration options for PLECS see “Con-
figuring PLECS” (on page 124).
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Installing Different Versions of PLECS Blockset in Paral-
lel

If you want to keep different versions of PLECS installed in parallel on one
computer, you must ensure that only one version is on your MATLAB path at
any time during a MATLAB session. Otherwise, loss of data may occur. Be-
fore changing the MATLAB path, be sure to clear the currently loaded PLECS
module by entering plecsclear at the MATLAB command prompt. As an addi-
tional precaution you should restart MATLAB after the change.

Uninstalling PLECS Blockset

Uninstalling PLECS Blockset is as easy as installing it.

1 Locate the directory where PLECS is installed by entering

which plecs

in the MATLAB command line.

2 Remove the PLECS directory and its subdirectory demos from the search
path. Depending on how the directories were added to the path during instal-
lation, this is done using the Path Browser or by editing the file pathdef.m
in the directory matlabroot/toolbox/local/ or your MATLAB startup file
startup.m.

3 Quit MATLAB.

4 On Windows, deinstall PLECS Blockset by choosing the appropriate entry
in the Windows control panel. On macOS and Linux just delete the PLECS
directory.

6
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License File Location

Both PLECS Standalone and PLECS Blockset search for license files named
*.lic in the following directories:

License File Search Paths

Platform Search Paths

Windows C:\Users\<USER>\AppData\Local\Plexim\PLECS\licenses
C:\ProgramData\Plexim\PLECS\licenses

macOS ~/Library/Application Support/Plexim/PLECS/licenses
/Library/Application Support/Plexim/PLECS/licenses

Linux ~/.local/share/Plexim/PLECS/licenses
/usr/local/share/Plexim/PLECS/licenses

The License Manager will install license files in the first directory listed for
each platform because this location is usually writable by the user. However,
an administrator may choose to install license files to be used for all users in
the other directory.

If none of the search directories contains any license file *.lic, PLECS uses the
environment variables PLEXIM_LICENSE_FILE and LM_LICENSE_FILE to locate
the license file.

Network Licensing

If you purchase one or more floating licenses for PLECS, the license server pro-
gram FlexNet Publisher is employed to control access to PLECS. FlexNet Pub-
lisher is a product of Flexera Software. The license file sent to you must be in-
stalled on the license server. This file contains information that identifies the
computer running the license manager and specifies the number of floating li-
censes you have purchased.

On the client computer(s), you need to use a text editor to create a license file
network.lic with the following content:

SERVER licenseserver ANY
USE_SERVER

7
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where licenseserver is the IP address or the hostname or fully qualified domain
name (FQDN) of the server computer running the license manager. If the host-
name or FQDN is used, verify that the client computer can resolve it to the
correct IP address. If the license manager uses a TCP port other than 27000-
27009, the port number must be specified on the SERVER line after the keyword
ANY, e.g.:

SERVER licenseserver ANY 3456
USE_SERVER

PLECS tries to obtain a license from the server the first time you load a model
or library containing a PLECS circuit. If the license is not granted – e.g. be-
cause the server is down or unreachable or because the licensed number of
concurrent users is already reached – PLECS will open the License Manager
to report the problem. In order to retry to obtain a license you need to restart
PLECS Standalone or clear PLECS Blockset from the MATLAB memory using
the MATLAB command plecsclear. Once granted, a license is returned to the
server when quit PLECS Standalone or clear PLECS Blockset from the MAT-
LAB memory.

If the connection to the license server is lost after you have obtained a license,
PLECS will temporarily switch to the unlicensed mode. Upon successful recon-
nection to the server, PLECS will switch back to normal operation.

8
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What’s New in Version 4.8

Major New Features

• The PLECS Coder now supports code generation for targets with multiple
processors. See “Generating Code” (on page 285).

• PLECS now supports fixed-point data types to facilitate code generation for
targets that do not support floating-point data types. See “Fixed-Point Data
Types” (on page 43).

• The Thermal Package Description now lets you characterize the thermal cou-
pling between individual semiconductors with an impedance matrix. See
“Thermal Package Description” (on page 150).

• PLECS now lets you choose between the classic light color scheme and a new
dark color scheme designed to work well in a low-lit environment. See “Con-
figuring PLECS” (on page 124).

Enhanced Library Components

Selected power modules have been enhanced to support thermal simulations
both in the “Switched” and “Sub-cycle average” configuration. This applies to
the following power modules:

• 3-Level Half Bridge (T-Type) (see page 340)
• Flying Capacitor Half Bridge (see page 449)
• IGBT 3-Level Half Bridge (NPC) (see page 486)
• IGBT Chopper (High-Side Switch) (see page 488)
• IGBT Chopper (High-Side Switch with Reverse Diode) (see page 489)
• IGBT Chopper (Low-Side Switch) (see page 491)
• IGBT Chopper (Low-Side Switch with Reverse Diode) (see page 492)
• IGBT Full Bridges (Series Connected) (see page 496)
• IGBT Half Bridge (see page 498)
• IGBT Half Bridges (Low-/High-Side Connected) (see page 500)

Further Enhancements

• The improved error reporting using spotlights makes it easier to identify the
erroneous components. In case of parameter evaluation errors, clickable links
take you directly to the corresponding dialog box to fix the problem.

9
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• PLECS will now detect sample time conflicts between continuous and dis-
crete blocks to help users avoid typical modelling mistakes, see “Continuous
Sample Time Conflicts” (on page 40).

• PLECS now supports model references into the same model file. See the doc-
umentation for the Model Reference block (on page 561).

• PLECS now fully supports self-referencing libraries. In prior releases, self-
references were permitted only if the library reference appeared after the
original subsystem in the model file.

• You can now limit the number of parallel computation threads that PLECS
will use for an individual analysis or for the execution of parallel simulations
or analyses. Prior to this, PLECS would limit this number to the number of
CPU cores. See “Analysis Tools – Usage in PLECS Standalone” (on page 186)
and “Configuring PLECS” (on page 124).

• PLECS now removes state-space equations for unused physical meters in
order to avoid unnecessary calculations. This is controlled with a new solver
option Remove unused state-space outputs, see “Simulation Parameters”
(on page 111).

Changed Behavior

• When PLECS is operated with a fixed-step solver, all physical domains are
discretized with Radau IIA or Tustin’s method as specified in the solver resp.
coder options. Prior to PLECS 4.8, only the electro-magnetic domain was dis-
cretized in this way, and the state variables from other physical domains
were integrated with Euler’s method. See also “Physical Model Discretiza-
tion” (on page 35).
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Getting Started

Let us have a quick tour and see how PLECS is used. Our aim is to show the
essential elements of PLECS in real applications without regarding all the de-
tails, rules, and exceptions. At this stage, we are not trying to be complete. We
want to get you as soon as possible to the point where you can set up useful ap-
plications. Many of the details are not necessary at the beginning and can be
studied later.

The following section addresses users of PLECS Standalone. If you are using
PLECS Blockset for Simulink, please continue with section “Getting Started
with PLECS Blockset” (on page 19).

Getting Started with PLECS Standalone

The only way to become familiar with a new program is by using it. For this
reason we are presenting here two example circuits that you can reconstruct
on your computer. The examples are based on each other, since the features of
PLECS will be explained step by step.

After starting PLECS the PLECS Library browser is displayed. In the libraries
you find various components from which you can create your circuits. You can
browse through the available libraries and see which components are available.

A Simple Passive Network

The first electrical system we are going to model is a simple RLC network as
shown in Fig. 1.1. A capacitor is charged by a DC voltage source via an RL-
branch and its voltage is monitored with a voltmeter.
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10mH

10V vC100 µF

10Ω

Figure 1.1: Simple RLC network

In order to enter the circuit in PLECS we have to open a new PLECS model.
This is done by selecting “New Model” from the “File” Menu in the Library
Browser.

Components

The components required for our circuit must be copied into this window from
the Library Browser. This is done by dragging them with the mouse. If you
want to copy components already placed in the window, hold down the Ctrl key
(cmd key on macOS) while dragging them.

The electrical components that you need for the RLC network can be found in
in the library “Electrical” in the sub-libraries “Sources”, “Meters” and “Passive
Components”. The scope is located in the library “System”. Instead of browsing
for the components you can also search for them by entering the first letters of
the component you need in the search bar. For example, typing sc shows you
the scope, res all available resistors etc.

After you have copied all components the schematic window should look like
Fig. 1.2. If not, move the components with the left mouse button. To rotate
selected components press Ctrl-R, to flip them horizontally press Ctrl-F. All
these functions can also be accessed via the menu bar.

Connections

The unconnected electrical terminals of a component are marked with little hol-
low circles. If we bring the mouse pointer close to such a terminal, the pointer
shape changes from an arrow to a cross. We now can drag a connection to an-
other component by holding the left mouse button down. When we approach
another terminal or an existing connection the pointer shape changes into a
double cross. As soon as we release the mouse button an electrical connection
will be created.

12
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Figure 1.2: PLECS schematic

For drawing a branch connection place the mouse pointer on an existing connec-
tion where you want the branch to start. With the right mouse button or with
the left mouse button while holding down the Ctrl key you can create a connec-
tion from there to the desired destination.

Component Properties

Each component is identified by a unique name, which is chosen automatically.
You may change it as you wish by double-clicking on it in the schematic. The
name is intended only for documentation purposes and does not affect the sim-
ulation. Of greater importance are the parameters that determine, for example,
the inductance of an inductor, the capacity of an capacitor, or the voltage of a
DC voltage source. A double-click on the component icon opens a dialog box in
which you can set these parameters. Fig. 1.3 shows the dialog box for an induc-
tor.

If you want selected parameters to be displayed in the schematic, check the
check box on the right side of the edit field. For reasons of clarity we prefer to
display only the most important parameters of a component.

Units

PLECS does not know anything about units. It is your responsibility that vari-
ables are scaled correctly. For power electronics we recommend the use of SI
quantities. However, if you want to employ PLECS for the simulation of power
systems, it may be more appropriate to work with “per unit” quantities.

13
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Figure 1.3: Inductor dialog box

For every component enter the values according to the schematic in Fig. 1.1. In
the dialog boxes of the inductor and the capacitor you can additionally set the
initial current resp. the initial voltage. Please leave both values at zero.

Signals

In addition to the electrical connections (wires) that are used to connect elec-
trical components PLECS also makes use of unidirectional signals. The signals
are painted in green and have an arrowhead to indicate their direction. In the
RLC example a signal connects the output terminal of the voltmeter to the in-
put terminal of the scope.

PLECS uses signals to carry non-electrical information like measurement val-
ues or triggering pulses for switches. Signals can be used in calculations and
displayed in a scope. Electrical connections cannot be fed into a scope directly,
you always have to use a volt- or ammeter to convert the electrical quantities
into a signal first.

By this time your model should look similar to Fig. 1.4. To start the simulation,
press Ctrl-T or select “Start” from the “Simulation” menu. In order to see the
more interesting part of the simulation, you need to set the time span to 0.1. To
do this, open the Simulation Parameters dialog by clicking the corresponding
menu entry in the “Simulation” menu or press Ctrl-E.

You should now get the simulation results shown in below.
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Figure 1.4: Complete model and simulation result

Adding Control Blocks

To enhance our model we would like to add some dynamic behavior into our
static electrical model. Let us see how the capacitor in our example charges
and discharges if we apply a pulsed voltage. In the schematic we replace the
DC voltage source by a controlled one. The input of the voltage source can be
any signal generated from one of the control blocks in PLECS. In Fig. 1.5 we
used a pulse generator with a period of 0.04 s and an amplitude of 10 to control
the voltage source.

Figure 1.5: RLC network with a pulsed voltage source
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Buck Converter

In the next example we will introduce the concept of ideal switches, which
distinguishes PLECS from other simulation programs. It will be shown how
switches are controlled, i.e. either by voltages and currents in the system or by
external signals.

25mH

vsrc 2Ω220µF vC

isrc

Figure 1.6: Schematic of buck converter

Switches

In the buck converter outlined in Fig. 1.6 we will model the transistor as an en-
tirely controllable switch and bear in mind that it may conduct current only
in one direction. We also need a free-wheeling diode. The diode is a switch
that closes as the voltage across it becomes positive, and opens as the current
through it becomes negative.

The diode can be found in the library “Electrical / Power Semiconductors” and
the switch in the library “Electrical / Switches”. All components in these li-
braries are based on ideal switches that have zero on-resistance and infinite
off-resistance. They open and close instantaneously. In some components like
the diode you may add a forward voltage or a non-zero on-resistance. If you are
unsure about these values, leave them at zero.

The switch is controlled by an external signal. It will close upon a non-zero in-
put and open when the signal goes back to zero.

We start with the electrical part of the buck converter first. By now you should
be able to model it as shown in Fig. 1.7.

Subsystems

We’d also like to separate the electrical part from the control part. This has no
effect on the simulation result but makes the whole system more structured.
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Figure 1.7: Electrical part of buck converter

Once you have completed the circuit from Fig. 1.7, select all components (ei-
ther by clicking on an empty space in the upper left corner of the schematic and
dragging a frame to the lower right corner, or by pressing Ctrl-A). Now create
a new subsystem by selecting “Create Subsystem” from the “Edit” menu or by
pressing Ctrl-G. The electrical components are now in a new subsystem “Sub”.
You can rename it to something more meaningful, e.g. “Circuit” and change the
icon size by dragging one of the selected corners. You can also move the name
label to another position by clicking and dragging it to the borders or the cor-
ners of the icon. Now your system should look similar to Fig. 1.8.

Figure 1.8: Electrical Subsystem

To connect the subsystem to the outer schematic we need to place ports into it.
Drag two Signal Inports and two Signal Outports into the subsystem schematic
and connect them to the voltage source, the switch, the volt- and the ammeter
respectively. Note that a new terminal appears in the subsystem icon for each
port that you drag into the subsystem schematic.

For the buck converter we will implement a hysteresis type control that keeps
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the capacitor voltage roughly in a ±0.2V band around 6V. To make things a
bit more interesting we apply a step change from 12V down to 8V to the input
voltage during the simulation.

Figure 1.9: Simulation of buck converter with hysteresis control

Demo Models

Now that you’ve built your first own models in PLECS it may be worthwhile to
take a look at the demo models that come with PLECS. Open the demo model
browser by selecting “Demo Models” from the “View” Menu.
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Getting Started with PLECS Blockset

To access PLECS you simply need to enter plecslib in the MATLAB command
line. This will bring up a Simulink model that contains a generic PLECS block
named “Circuit” and various component libraries. In the libraries you find elec-
trical components, from which you can create your circuits. Alternatively, you
may access the PLECS toolbox by opening it in the Simulink library browser.

A Simple Passive Network

The only way to become familiar with a new program is by using it. For this
reason we are presenting here two example circuits that you can reconstruct
on your computer. The examples are based on each other, since the features of
PLECS will be explained step by step.

The first electrical system we are going to model is a simple RLC network as
shown in Fig. 1.10. A capacitor is charged by a DC voltage source via an RL-
branch and its voltage is monitored with a voltmeter.

10mH

10V vC100 µF

10Ω

Figure 1.10: Simple RLC network

In order to enter the circuit in PLECS we have to open a new Simulink model.
Into the model window we copy the block “Circuit” from the PLECS library by
dragging it with the mouse. Our Simulink model should now look like Fig. 1.11.

Components

A double-click on the PLECS block will open an empty schematic window with
a menu bar quite similar to the one of a Simulink window. The components re-
quired for our circuit must be copied into this window from the components
libraries. Like in Simulink, this is done by dragging them with the mouse. If
you want to copy components already placed in the window, hold down the Ctrl
key (cmd key on macOS) while dragging the mouse. The components that you
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Figure 1.11: Simulink model

need for the RLC network can be found in in the library “Electrical” in the sub-
libraries “Sources”, “Meters” and “Passive Components”.

After you have copied all components the schematic window should look like
Fig. 1.12. If not, move the components with the left mouse button. To rotate
selected components press Ctrl-R, to flip them horizontally press Ctrl-F. All
these functions can also be accessed via the menu bar.

Figure 1.12: PLECS schematic

Note You cannot place Simulink objects in a PLECS schematic and vice versa
since both programs do not share the same Graphical User Interface.
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Connections

The unconnected electrical terminals of a component are marked with little hol-
low circles. If we bring the mouse pointer close to such a terminal, the pointer
shape changes from an arrow to a cross. We now can drag a connection to an-
other component by holding the left mouse button down. When we approach
another terminal or an existing connection the pointer shape changes into a
double cross. As soon as we release the mouse button an electrical connection
will be created.

For drawing a branch connection place the mouse pointer on an existing connec-
tion where you want the branch to start. With the right mouse button or with
the left mouse button while holding down the Ctrl key you can create a connec-
tion from there to the desired destination.

Component Properties

Each component is identified by a unique name, which is chosen automatically.
You may change it as you wish by double-clicking on it in the schematic. The
name is intended only for documentation purposes and does not affect the sim-
ulation. Of greater importance are the parameters that determine, for example,
the inductance of an inductor, the capacity of an capacitor, or the voltage of a
DC voltage source. A double-click on the component icon opens a dialog box in
which you can set these parameters. Fig. 1.13 shows the dialog box for an in-
ductor.

Figure 1.13: Inductor dialog box

If you want selected parameters to be displayed in the schematic, check the
check box on the right side of the edit field. For reasons of clarity we prefer to
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display only the most important parameters of a component.

Units

Like Simulink PLECS does not know anything about units. It is your responsi-
bility that variables are scaled correctly. For power electronics we recommend
the use of SI quantities. However, if you want to employ PLECS for the sim-
ulation of power systems, it may be more appropriate to work with “per unit”
quantities.

For every component enter the values according to the schematic in Fig. 1.10.
In the dialog boxes of the inductor and the capacitor you can additionally set
the initial current resp. the initial voltage. Please leave both values at zero.

Signals

Up to now our electrical circuit lacks a connection with the Simulink environ-
ment. You will notice this from the fact that the PLECS block in Simulink does
not have inputs or outputs. In order to add inputs and outputs we must copy
the respective port blocks from the library “System” into the schematic. In our
case we want to access in Simulink the voltage measured by the voltmeter.
Therefore, we need the “Signal Outport” block that exports a signal into the
parent system.

Signals in PLECS correspond to the connections between Simulink blocks. They
provide unidirectional information interchange between components and with
Simulink.

Connect the output of the voltmeter with the input of the port block. In
Simulink, connect a Scope to the output of the PLECS block and start the simu-
lation. In order to see the more interesting part of the simulation, you probably
need to set the stop time to 0.1. By this time you should have something like
Fig. 1.14 and Fig. 1.15 on your screen.

Adding More Measurements

If you want to measure other quantities in the circuit, simply add the required
voltmeters and ammeters. The measured signals can be exported to Simulink
with additional port blocks. Alternatively you can bundle the measured signals
into a vector by using the multiplexer for signals “Signal Multiplexer” from the
library “System”.
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Figure 1.14: Complete model

Figure 1.15: Simulation result

You can also add scopes in the PLECS schematic directly. The “Scope" block can
be found in the library “System".

Importing Signals

You have already learned how to export signals from the electrical circuit to
Simulink via the output block. In the same manner you can also import signals
from Simulink into your circuit, usually to control sources.

Let us see how the capacitor in our example charges and discharges if we apply
a pulsed voltage. In the schematic we replace the DC voltage source by a con-
trolled one. Copy the input block “Signal Inport” into the schematic and connect
it to the voltage source. The PLECS block in Simulink now also has an input
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terminal. Any Simulink signal that you connect to this terminal will be trans-
lated into a voltage in the electrical circuit. In Fig. 1.16 we used a pulse genera-
tor with a period of 0.04 s and an amplitude of 10.

Figure 1.16: RLC network with a pulsed voltage source

The signal generated by the pulse generator is discrete, i.e. its value changes
abruptly. Normally, the PLECS Scope would determine the signal type auto-
matically and display vertical slopes. In this case, however, the discrete signal
coming from the pulse generator is multiplexed with a continuous signal before
reaching the Scope. In order to avoid trapezoidal curves, the signal type must
be set manually to “discrete” in the Data window of the Scope (see Fig. 1.17).

Figure 1.17: Data window of the PLECS Scope

Buck Converter

In the next example we will introduce the concept of ideal switches, which
distinguishes PLECS from other simulation programs. It will be shown how
switches are controlled, i.e. either by voltages and currents in the system or by
external signals.
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25mH

vsrc 2Ω220µF vC

isrc

Figure 1.18: Schematic of buck converter

Switches

In the buck converter outlined in Fig. 1.18 we will model the transistor as an
entirely controllable switch and bear in mind that it may conduct current only
in one direction. We also need a free-wheeling diode. The diode is a switch
that closes as the voltage across it becomes positive, and opens as the current
through it becomes negative.
The diode can be found in the library “Electrical / Power Semiconductors” and
the switch in the library “Electrical / Switches”. All components in these li-
braries are based on ideal switches that have zero on-resistance and infinite
off-resistance. They open and close instantaneously. In some components like
the diode you may add a forward voltage or a non-zero on-resistance. If you are
unsure about these values, leave them at zero.
In order to control the switch in our buck converter we import another signal
from Simulink and connect it to the switch. The switch will close upon a non-
zero signal and open when the signal goes back to zero.

Figure 1.19: Electrical part of buck converter

By now you should be able to model the electrical part of the buck converter as
shown in Fig. 1.19. For the buck converter we will implement a hysteresis type
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control that keeps the capacitor voltage roughly in a ±0.2V band around 6V. To
make things a bit more interesting we apply a step change from 12V down to
8V to the input voltage during the simulation.

Figure 1.20: Simulation of buck converter with hysteresis control

Demo Models

Now that you’ve built your first own models in PLECS it may be worthwhile to
take a look at the demo models that come with PLECS. Open the demo model
browser by selecting “Demo Models” from the “View” Menu.
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2

How PLECS Works

PLECS is a software package for modeling and simulating dynamic systems. As
with any other software package, in order to make the best use of it you should
have a basic understanding of its working principles. Before delving into the
question how PLECS works, however, it is worthwhile to distinguish between
the terms modeling and simulation.

The term modeling refers to the process of extracting knowledge from the sys-
tem to be simulated and representing this knowledge in some formal way.
The second part – i.e. the representation of knowledge – can be more or less
straightforward depending on the formalism used. PLECS offers three differ-
ent formalisms – equations (implemented as C-code), block diagrams and phys-
ical models – that can be used in the same modeling environment. They are de-
scribed in the following section.

The term simulation refers to the process of performing experiments on a model
in order to predict how the real system would behave under the same condi-
tions. More specifically, in the context of PLECS, it refers to the computation of
the trajectories of the model’s states and outputs over time by means of an ordi-
nary differential equation (ODE) solver. This is described in the second section.

Modeling Dynamic Systems

A system can be thought of as a black box as depicted below. The system does
not exchange energy with its environment but only information: It accepts in-
put signals u, and its reactions can be observed by the output signals y.

A system can have internal state variables that store information about the
system’s past and influence its current behavior. Such state variables can be
continuous, i.e. they are governed by differential equations, or discrete, i.e. they
change only at certain instants. An example of a continuous state variable is
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xc, xd

System states
u

Input signals
y
Output signals

the flux or current of an inductor; an example of a discrete state variable is the
state of a flip flop.

System Equations

One way to describe a system is by mathematical equations. Typical system
equations are listed below:

• An output function describes the system’s outputs in terms of the current
time, the system’s inputs and its internal states.

• If the system has discrete states, an update function determines if and how
they change at a given time for the current inputs and internal states.

• If the system has continuous states, a derivative function describes their
derivatives with respect to time.

Symbolically, these functions can be expressed as follows:

y = foutput(t, u, xc, xd)

xnext
d = fupdate(t, u, xc, xd)

ẋc = fderivative(t, u, xc, xd)

Such a description is most convenient for implementation in a procedural pro-
gramming language like C.

Block Diagrams

A more graphic modeling method that is commonly used in control engineering
is a block diagram such as the one below which shows a low pass filter.

Each of the three blocks is again a dynamic system in itself, that can be de-
scribed with its own set of system equations. The blocks are interconnected
with directed lines to form a larger system. The direction of the connections
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1/s+− 10

determines the order in which the equations of the individual blocks must be
evaluated.

Physical Models

Block diagrams are very convenient to model control structures where it is clear
what the input and output of a block should be. This distinction is less clear or
impossible for physical systems.

For instance, an electrical resistor relates the quantities voltage and current
according to Ohm’s law. But does it conduct a current because a voltage is ap-
plied to it, or does it produce a voltage because a current is flowing through it?
Whether the first or the second formulation is more appropriate depends on the
context, e.g. whether the resistor is connected in series with an inductor or in
parallel with a capacitor. This means that it is not possible to create a single
block that represents an electrical resistor.

Therefore, block diagrams with their directed connections are usually not very
useful for modeling physical systems. Physical systems are more conveniently
modeled using schematics in which the connections between individual compo-
nents do not imply a computational order.

PLECS currently supports physical models in the electrical, magnetic, mechani-
cal and thermal domains (in the form of lumped parameter models).

Simulating Dynamic Systems

A simulation is performed in two phases – initialization and execution – that
are described in this section.

Model Initialization

Physical Model Equations

PLECS first sets up the system equations for the physical model according to
e.g. Kirchhoff ’s current and voltage laws. If the physical model contains only
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ideal linear and/or switching elements, it can be described by a set of piece-wise
linear state-space equations:

ẋ = Aσx+Bσu

y = Cσx+Dσu

The subscript σ is due to the fact that each state-change of a switching element
leads to a new set of state-space matrices.

The complete physical model is thus represented by a single, atomic subsystem.
The following figure shows the interaction between the physical subsystem, the
surrounding block diagram and the ODE solver.
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Switched state-space implementation

The physical subsystem accepts external input signals for controllable sources
and for switching elements and it provides an output signal containing the val-
ues of physical measurements. During the simulation, the derivatives of the
physical state variables are calculated and handed over to the solver which in
turn calculates the momentary values of these state variables.

The Switch Manager monitors the gate signals and the internal measurements
and decides whether a switching action is necessary. The Switch Manager also
provides auxiliary signals – so-called zero-crossing signals – to the solver for
proper location of the exact instants when a switching should occur.

A flowchart of the Switch Manager is shown in the figure below. In every simu-
lation step, after the physical measurements have been calculated, the Switch
Manager evaluates the switching conditions of all switches in the physical
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model. If a switching action is necessary, it initiates the calculation of a new
set of state-space matrices or fetches a previously calculated set from a cache.
Afterwards, it recalculates the physical measurements with the new state-space
matrices to check whether further switching actions of naturally commutated
devices are required. It will iterate through this process until all switches have
reached a stable position. If a set of switch states σ is encountered repeatedly
in this process, PLECS is unable to determine stable conditions and aborts the
simulation.

Calculate 
state-space

outputs

Toggle switches
and get new
topology σ

Switch loop
detected?

Switching
required?

Start with
given u, x, σ

Continue with
next step

yes

no

no

STOP
yes

Switch Manager flowchart

Block Sorting

After the setup of the physical model, PLECS determines the execution order
of the block diagram. As noted above, the physical model is treated as a single
atomic subsystem of the block diagram. The execution order is governed by the
following computational causality:

If the output function of a block depends on the current value of one or
more input signals,the output functions of the blocks that provide these
input signals must be evaluated first.
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Direct feedthrough The property of an input port whether or not its cur-
rent signal values are required to compute the output function is called direct
feedthrough. For example, the output function of a linear gain is

y = k · u

and so the input signal of the gain has direct feedthrough. In contrast, the out-
put function of an integrator is

y = xc

i.e. the integrator just outputs its current state regardless of the current input.
The integrator input therefore does not have direct feedthrough.

Algebraic loops An algebraic loop is a group of one or more blocks that are
connected in a circular manner, so that the output of one block is connected to a
direct feedthrough input of the next one.

For such a group it is impossible to find a sequence in which to compute their
output functions because each computation involves an unknown variable (the
output of the previous block). Instead, the output functions of these blocks must
be solved simultaneously. PLECS uses a Newton-type equation solver for this
purpose. Since the solver performs iterations in order to find a solution con-
sistent with all blocks, models with algebraic loops may run more slowly than
models without algebraic loops. Failure to find a solution brings the simulation
to a halt with an error message.

See “Simulation Parameters” (on page 111) for a list of parameters that influ-
ence the solution of algebraic loops.

The Initial Condition block (see page 531) can be used to provide a guess to the
equation solver at the start of a simulation.
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Model Execution

The figure below illustrates the workflow of the actual simulation.
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Main Loop

The main simulation loop – also called a major time step – consists of two ac-
tions:

1 The output functions of all blocks are evaluated in the execution order that
was determined during block sorting. If a model contains scopes, they will be
updated at this point.

2 The update functions of blocks with discrete state variables are executed to
compute the discrete state values for the next simulation step.

Depending on the model and the solver settings, the solver may enter one or
both of the following minor loops.
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Integration Loop

If a model has continuous state variables, it is the task of the solver to numer-
ically integrate the time derivatives of the state variables (provided by the
model) in order to calculate the momentary values of the states variables.

Depending on the solver algorithm, an integration step is performed in multi-
ple stages – also called minor time steps – in order to increase the accuracy of
the numerical integration. In each stage the solver calculates the derivatives at
a different intermediate time. Since the derivative function of a block can de-
pend on the block’s inputs – i.e. on other blocks’ outputs – the solver must first
execute all output functions for that particular time.

Having completed an integration step for the current step size, a variable-step
solver checks whether the local integration error remains within the specified
tolerance. If not, the current integration step is discarded and a new integra-
tion is initiated with a reduced step size.

Event Detection Loop

If a model contains discontinuities, i.e. instants at which the model behavior
changes abruptly, it may register auxiliary event functions to aid a variable-
step solver in locating these instants. Event functions are block functions and
are specified implicitly as zero-crossing functions depending on the current time
and the block’s inputs and internal states.

For instance, if a physical model contains a diode, it will register two event
functions, fturn on = vD and fturn off = iD, depending on the diode voltage
and current, so that the solver can locate the exact instants at which the diode
should turn on and off.

If one or more event functions change sign during the current simulation
step, the solver performs a bisection search to locate the time of the first zero-
crossing. This search involves the evaluation of the event functions at differ-
ent intermediate times. Since the event function of a block – like the derivative
function – can depend on the block’s inputs, the solver must first execute all
output functions for a particular time. Also these intermediate time steps are
called minor time steps.

Having located the first event, the solver will reduce the current step size so
that the next major time step is taken just after the event.
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Fixed-Step Simulation

As indicated in the previous paragraphs, certain important aspects of the mi-
nor simulation loops require a variable-step solver that can change its step size
during a simulation. Using a solver with a fixed step size has two serious impli-
cations.

Integration Error A fixed-step solver does not have any control over the in-
tegration error. The integration error is a function of the model time constants,
the step size and the integration method. The first parameter is obviously given
by the model, but the second and possibly the third parameter must be provided
by the user. One strategy for determining an appropriate step size is to iter-
atively run simulations and reduce the step size until the simulation results
stabilize.

Event Handling Discontinuities in a physical model – such as the turn-on or
turn-off of a diode or the transition from static to dynamic friction – typically do
not coincide with a fixed simulation step. Postponing such non-sampled events
until the following fixed simulation step will produce jitter and may lead to sub-
sequent runtime errors, e.g. because a physical state variable becomes discon-
tinuous.

For these reasons it is generally recommended to use a variable-step solver.

Physical Model Discretization

In order to mitigate the problems due to non-sampled events, PLECS trans-
forms the physical model into a discrete state-space model when it is simulated
with a fixed-step solver. The continuous state-space equations of the electrical
and magnetic domains are discretized and replaced with the following update
rule:

xn = Ad · xn−1 +Bd1 · un−1 +Bd2 · un

By default, a first-order hold is applied to the input signals, i.e. it is assumed
that the inputs change linearly from un−1 in the previous step to un in the cur-
rent step. As a consequence, the inputs of the electro-magnetic model now have
direct feedthrough because their current values must be known before the cur-
rent model states and the model output can be calculated. This will result in an
algebraic loop if the value of a controlled voltage or current source depends on a
measurement in the electro-magnetic model.

To avoid this problem, the Controlled Current Source (see page 402) and the
Controlled Voltage Source (see page 822) can be configured to apply a zero-order
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hold on the input signal when the model is discretized. In this case only the in-
put value from the previous simulation step u

(i)
n−1 is required to calculate the

current state values.

By default, the discrete state-space matrices Ad, Bd1 and Bd2 are calculated
from the continuous matrices A and B using a fifth-order accurate fully-implicit
three-stage Runge-Kutta formula (Radau IIA). Alternatively, the bilinear trans-
formation known as Tustin’s method can be chosen. It is only 2nd order accu-
rate and has poor damping characteristics for time constants that are smaller
than the discretization step size, but it is cheaper to compute because Bd1

equals Bd2. Therefore, it can be useful for real-time simulations where the cal-
culation time is essential. The discretization method can be chosen in the Simu-
lation Parameters dialog (see page 111).

Note that this applies only to the discretization of physical domains. The state
variables from the control block diagram are integrated with Euler’s method.

Interpolation of Non-Sampled Switching Events

With the physical model discretized like this, non-sampled switching events can
be handled efficiently using the following algorithm:

1 Check whether the solver has stepped over a non-sampled switching event in
the last simulation step.

2 If so, determine the time of the event and calculate the model state just after
the event using linear interpolation and handle the event, i.e. toggle one or
more switches.

3 Perform one full forward step.

4 Linearly interpolate the model states back to the actual simulation time.

This algorithm is illustrated using the example of a half-wave rectifier shown
below. The two graphs show the commutation of the dc current from diode D3
(shown in gray) to diode D1 (shown in black). The solid lines show the results
from a simulation with a variable-step solver, large dots mark the steps of the
fixed-step simulation, and small dots mark the internal interpolation steps.

Commutation starts when the voltage across D1 becomes positive. The fixed-
step solver first steps well beyond the zero-crossing of the voltage (1). PLECS
then internally steps back to the zero-crossing (2) and turns on D1. With the
new set of state-space equations, it performs an internal full step forward (3)
and then interpolates back to the actual simulation time (4). Next, the solver
steps beyond the zero-crossing of the current through D3 (1). Again, PLECS
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internally steps back to the zero-crossing (2) and turns off D3. With the new set
of state-space equations, it performs an internal full step forward (3) and then
interpolates back to the actual simulation time (4).
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Interpolation of non-sampled switching events

Note that without this interpolation scheme, D3 would have been turned off at
point (1). This would have caused the current through the inductor in phase 3
to become discontinuous. Such a non-physical behavior can lead to gross simu-
lation errors and should therefore be avoided.

Sampled Data Systems

PLECS allows you to model sampled data systems, i.e. discrete systems that
change only at distinct times. You can model systems that are sampled periodi-
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cally or at variable intervals, systems that contain blocks with different sample
rates, and systems that mix continuous and discrete blocks.

Sample Times

Sample times are assigned on a per-block basis. Some blocks may have more
than one sample time, and they may associate assign different sample times to
different input or output terminals. PLECS distinguishes between the following
sample time types:

Continuous A continuous sample time is used for blocks that must be up-
dated in every major and minor time step. This includes all blocks that have
continuous state variables, such as the Integrator or Transfer Function.

Semi-Continuous A semi-continuous sample time is used for blocks that
must be updated in every major time step but whose output does not change
during minor time steps. This applies for instance to the Memory block, which
always outputs the input value of the previous major time step.

Discrete-Periodic A periodic sample time is used for blocks that are updated
during major time steps at regular intervals.

Discrete-Variable A variable sample time is used for blocks that must be up-
dated during major time steps at variable intervals which are specified by the
blocks themselves.

Inherited An inherited sample time is used for blocks that do not have a sam-
ple time of their own but may adopt the sample time from other blocks con-
nected to them. This includes blocks such as Gain, Sum and Product.

Constant A constant sample time is used for blocks that are updated only
once at the beginning of a simulation. The only block that explicitly uses a con-
stant sample time is the Constant block. However, other blocks may inherit a
constant sample time.

For most block types the sample time is automatically assigned. Discrete blocks
and the C-Script block (see page 381) have a parameter Sample Time allowing
you to specify the sample time explicitly. A sample time is specified as a two-
element vector consisting of the sample period and an offset time. The offset
time can be omitted if it is zero.

The table below lists the different sample time types and their corresponding
parameter values.
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Sample Time Parameter Values

Type Value

Continuous [0, 0]

0

Semi-Continuous [0, -1]

Discrete-Periodic [Tp, To] Tp: Sample period, Tp > 0

Tp To: Sample offset, 0 ≤ To < Tp

Discrete-Variable [-2, 0]

-2

Inherited [-1, 0]

-1

Constant [inf, 0]

inf

Sample Time Inheritance

For blocks with an inherited sample time, PLECS employs the following propa-
gation scheme to determine an appropriate sample time:

1 Propagate the sample times forward along the block execution order (see
“Block Sorting” on page 31). A block with an inherited sample time will be
assigned a sample time based on the sample times of the blocks that are con-
nected to the block’s inputs.

2 Propagate the sample times backward along the block execution order. A
block with an inherited sample time will be assigned a sample time based
on the sample times of the blocks that are connected to the block’s outputs.

3 Loop until there are no inherited sample times left or until no inherited sam-
ple time can be resolved.

Sample times are assigned according to the following rules:

• If any sample time is inherited, the block sample time also remains inher-
ited.
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• Else, if all sample times are constant, the block sample time is set to con-
stant.

• Else, if any sample time is continuous, the block sample time is set to contin-
uous.

• Else, if all sample times are fixed-step discrete or constant and the fastest
sample time is a valid base sample time of the other non-constant sample
times, the block sample time is set to the fastest sample time.

• Else, the block sample time is set to semi-continuous.

Any block sample time that cannot be resolved using this propagation scheme
is set to continuous.

Continuous Sample Time Conflicts

A continuous sample time conflict arises when a continuous signal is fed into a
block that expects a discrete input or when a discrete signal is fed into a block
that expects a continuous input. Such a situation typically indicates a mod-
elling error that produces undesirable results.

Example 1 A user attempts to break an algebraic loop by inserting a Mem-
ory block (see page 555). This is problematic if the loop involves a continuous-
time signal because the Memory is a discrete block and converts the continu-
ous signal into a piece-wise constant signal. It also introduces a variable-step
delay when used with a variable-step solver. In order to mitigate the negative
effects of this, the user may be tempted to limit the maximum step size of the
variable-step solver or switch to the fixed-step solver with a small time step,
which leads to very long simulation times.

The proper way to break a continuous algebraic loop is by inserting a continu-
ous low pass filter.

Example 2 A user attempts to produce phase-shifted gate signals for an
interleaved converter with a Transport Delay block (see page 790). This is
problematic because the Transport Delay is a continuous block and produces
the delayed output signal by interpolating between past samples of the input
signal. A rectangular input signal is thus converted into a trapezoidal sig-
nal where the slope depends on the solver step size. Again, they user may be
tempted to limit the maximum step size of the variable-step solver or switch to
the fixed-step solver with a small time step.

The proper block to delay a rectangular or any other discrete signal is the
Pulse Delay (see page 619).
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PLECS will detect such continuous sample time conflicts and flag an appropri-
ate diagnostic warning or error. This is controlled with the solver option Con-
tinuous sample time conflict on the Diagnostics tab of the simulation pa-
rameters dialog, see “Simulation Parameters” (on page 111).

Multirate Systems

Systems that contain blocks with multiple different discrete-periodic sample
times are called multirate systems. For such systems, PLECS calculates a base
sample time as the greatest common divisor of the periods and offsets of the
individual sample times. The individual periods and offsets are then expressed
as integer multiples of the base sample time.

This is necessary in order to avoid synchronization problems between blocks
with different sample times that would occur when the sample hits are calcu-
lated using floating-point arithmetic. For instance, in double precision floating-
point arithmetic 3*1e-4 is not equal to 3e-4 (even though the difference is only
about 5.4 ∗ 10−20).

In order to find the greatest common divisor, PLECS may slightly adjust indi-
vidual sample periods or offsets within a relative tolerance of approximately
±10−8. PLECS does not allow the base sample time to become smaller than
10−6 times the largest sample period in order to avoid overflows in the integer
arithmetic.

Troubleshooting

If PLECS fails to find an appropriate base sample time, it will show a corre-
sponding error message. There are three possibilities to resolve the problem:

Adjusting the sample times Adjust the sample times of the individual
blocks in the system so that PLECS can find a base sample time within the
above constraints. Whenever possible, specify sample times as rational num-
bers instead of decimal fractions. For instance, for a block that is sampled with
a frequency of 30 kHz enter 1/30e3 instead of 3.3333e-5.

Allow multiple base sample times You can allow PLECS to use different
base sample rates for different groups of block sample times. To do so, uncheck
the option Use single base sample rate in the simulation parameters dialog.
Only block sample times within the same group are then guaranteed to be syn-
chronized with each other.
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Disable sample time synchronization You can disable the sample time
synchronization altogether by unchecking the option Synchronize fixed-step
sample times in the simulation parameters dialog. This is generally not rec-
ommended.

The last two options are only available when using a continuous state-space
model with a variable-step solver.
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Data Types

PLECS can use different data types to store the value of a signal. Boolean, in-
teger and floating-point data types are listed in the table below. Additionally
fixed-point data types are supported (see next section).

Data Types

Name Description

bool Boolean

uint8_t Unsigned 8-bit integer

int8_t Signed 8-bit integer

uint16_t Unsigned 16-bit integer

int16_t Signed 16-bit integer

uint32_t Unsigned 32-bit integer

int32_t Signed 32-bit integer

float Single-precision floating point

double Double-precision floating point

target A pseudo data type that resolves to single-precision or
double-precision floating point depending on the simulation
target. For normal simulations and when using the PLECS
Blockset Coder, this type resolves to double. When using
the PLECS Standalone Coder, the type is determined by the
parameter Floating point format in the Coder Options
dialog (see “Generating Code” on page 285).

Fixed-Point Data Types

PLECS supports signed and unsigned fixed-point numbers with a word length
of 8, 16 or 32 bits. The scaling and interpretation of the fixed-point value is de-
fined by the number of fractional bits. The results of arithmetic operations are
rounded to the closest representable number in direction of negative infinity
(two’s complement truncation).
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When you select a Fixed-point number data type, additional control elements
appear. The signedness and word length are set by selecting the base data
type from the combo box. The number of fractional bits can be specified with
the spin box. The resulting range and precision of the current settings are dis-
played underneath.

A fixed-point data type can also be passed with a reference variable by specify-
ing its properties as a structure. E.g. struct(’Signed’, 1, ’WordLength’,
32, ’FractionLength’, 16) specifies a signed 32-bit fixed-point data type
with 16 fractional bits.

Setting the global model parameter Use floating-point data type for fixed-
point signals (see “Simulation Parameters” on page 111) overwrites all fixed-
point data types with the target floating-point data type. This can be used to
easily compare the accuracy of fixed-point operations with floating-point opera-
tions.

Blocks with an Implicit Output Data Type

Certain blocks have an implicit output data type. For instance, all physical
meters use the target output type, and a logical operator always outputs a
Boolean signal. Other blocks with implicit output data types are listed be-
low:

• Comparator (see page 388), bool
• Compare to Constant (see page 389), bool
• Edge Detection (see page 439), bool
• FMU (see page 460), according to the FMU description
• Hit Crossing (see page 475), bool
• Logical Operator (see page 542), bool
• Monoflop (see page 562), bool
• Relational Operator (see page 628), bool
• Sign (see page 678), int32_t
• Trigger (see page 797), bool

Specifying an Output Data Type

The following blocks let you specify the data type of their output signals:

• Constant (see page 391)
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• Data Type (see page 406)
• Enable (see page 447)
• Gain (see page 464)
• Offset (see page 584)
• Product (see page 618)
• Pulse Generator (see page 620)
• Relay (see page 629)
• Rounding (see page 649)
• Signal Input (see page 671)
• Step (see page 694)
• Sum (see page 698)

Some of these blocks also let you choose to inherit the output data type from the
input signal(s).

Data Type Inheritance

The following blocks implicitly inherit the output data type from the input sig-
nals:

• Abs (see page 358), the unsigned input data type is set as output data type
• Delay (see page 410)
• Dynamic Signal Selector (see page 438)
• Function (see page 459)
• Initial Condition (see page 531)
• Manual Signal Switch (see page 550)
• Memory (see page 555)
• Minimum / Maximum (see page 557)
• Multiport Signal Switch (see page 572)
• Saturation (see page 659)
• Signal Switch (see page 677)
• Zero Order Hold (see page 837)

If the input signals have heterogeneous data types, an error message is gen-
erated, unless there is at least one floating-point data type and no fixed-point
data type. In this case the floating-point data type is inherited. To explicitly set
the data type of one of the above blocks, insert a Data Type block (see page 406)
in front of the block.
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Earlier versions of PLECS implemented more relaxed data type inheritance
rules by choosing the data type with the greatest order (as defined in the ta-
ble above). These rules can be applied to legacy models by changing the global
model parameter Datatype inheritance conflict (see “Simulation Parame-
ters” on page 111).

Data Type Overflows

Data type overflows are handled individually per block according to the Data
type overflow handling parameter. This option applies to simulations and
generated code. The options are:

• Unchecked Overflows are ignored, the resulting value is dependent on the
platform and the compiler used. The most efficient code is generated with
this option.

• Saturate Overflows/underflows are clamped to the maximum/minimum rep-
resentable value of the data type.

• Assert with error The simulation or program execution is aborted with an
error if an overflow is detected.

With the global model parameter Datatype overflow (see “Simulation Pa-
rameters” on page 111) warning/error messages on data type overflow can be
enabled independent from the individual block settings. This parameter only
affects simulations and not code generation.
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Using PLECS

The main user interface of PLECS is the graphical schematic editor in which
you create block diagrams and physical models. This chapter describes the
aspects of the schematic editor that are common to PLECS Standalone and
PLECS Blockset but also the differences between the two that are highlighted
in the first two sections.

Using PLECS Standalone

Creating a New Model

To create a new model, choose New Model from the File menu. It is good prac-
tice to save the new model before you make any changes in order to enable the
auto-save functionality.

Importing a Schematic From PLECS Blockset

To facilitate data exchange between PLECS Standalone and PLECS Block-
set, you can import the schematics of PLECS Circuit blocks inside a Simulink
model. To do so, choose Import form Blockset... from the File menu.

Note PLECS cannot import the Simulink blocks within a Simulink model
because there is no exact match between Simulink blocks and PLECS compo-
nents.
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Using PLECS Blockset

The main element of PLECS Blockset is the PLECS Circuit block in the
PLECS Library. This block constitutes the interface between the PLECS sim-
ulation engine and the Simulink solver.

To open the PLECS library, type plecslib at the MATLAB command prompt or
click on the Library Browser icon in a Simulink window and click on PLECS
in the Simulink Library Browser window.

Creating a New Circuit

To create a new circuit, copy the PLECS Circuit block from the PLECS library
into your Simulink model, then double-click the block to open the schematic edi-
tor.
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Note You cannot place Simulink blocks in a PLECS schematic or PLECS com-
ponents in a Simulink model because the two programs do not share the same
Graphical User Interface.

Importing a Schematic From PLECS Standalone

To facilitate data exchange between PLECS Blockset and PLECS Standalone,
you can import the schematics of a PLECS Standalone model into a PLECS
Blockset schematic. To do so, choose Import from Standalone... from the File
menu.

Opening a PLECS Standalone Model

You can also directly open.a PLECS Standalone model in the PLECS Blockset
schematic editor. This is useful if you want to work with the Model Reference
(see page 561) block.

To open a PLECS Standalone model, choose Open from the File menu of a
schematic editor or the PLECS Library Browser and change the file type fil-
ter in the file dialog to PLECS Standalone model files (*.plecs). Note that
the schematic editor of a PLECS Standalone model does not have a Simu-
late menu in PLECS Blockset because you cannot run a simulation without a
Simulink model.

Customizing the Circuit Block

You can customize the mask of the Circuit block to a certain extent, e.g. in or-
der to change the block icon or to define mask parameters. For information on
Simulink block masks please refer to the Simulink documentation.

Note You may not change the mask type or remove the callback from the ini-
tialization commands. Doing so will break the interface and may lead to loss of
data.
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If you define mask parameters for the Circuit block, PLECS evaluates com-
ponent parameters in the mask workspace rather than the MATLAB base
workspace. The mask workspace contains both the mask parameters and any
additional variables defined by the mask initialization commands. For details
on parameter evaluation see “Specifying Component Parameters” (on page 52).

By default, a double-click on the Circuit block opens the schematic editor. This
can be changed by editing the OpenFcn parameter of the block. To change the
behavior so that a double-click opens both the schematic editor and the mask
dialog,

1 Select the block, then choose Block Properties from the Edit menu or from
the block’s context menu.

2 On the Callbacks pane of the block properties dialog, select OpenFcn from
the function list and change the content of the callback function to

plecs('sl',202); open_system(gcb,'mask');

Alternatively, you can change the behavior so that a double-click opens only the
mask dialog. Then, add a checkbox to the dialog that will open the schematic
editor when you click on it:

1 Select the block, then choose Block Properties from the Edit menu or from
the block’s context menu.

2 On the Callbacks pane of the block properties dialog select OpenFcn from
the function list and clear the content of the callback function.

3 Select the block, then choose Edit Mask from the Edit menu or from the
block’s context menu.

4 On the Parameters pane of the mask editor add a checkbox parameter with
the prompt Open schematic and the variable name openschematic. As a dia-
log callback for the new parameter enter

if (strcmp(get_param(gcb,'openschematic'),'on'))
set_param(gcb,'openschematic','off');
plecs('sl',202);

end
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Using the Library Browser

In PLECS Standalone it is opened automatically when the program is started.
In PLECS Blockset the library browser is opened by a double-click on the Com-
ponents block in the PLECS library. It can always be re-opened by choosing Li-
brary Browser in the Window menu or using the shortcut Ctrl-L.

You can navigate through the component library by clicking on the tree entries.
Alternatively, you can search for a specific component by typing part of its name
into the search bar.

Drag the components you need from the library browser into the schematic edi-
tor.
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Components

Copying a Component into a Schematic

You can copy a new component into a schematic in different ways:

• Drag a component from the Library Browser into the schematic.
• Click into the schematic and start typing the type name of the desired com-

ponent. This will open a mini browser in a popup window. To insert a com-
ponent, use the up/down cursor keys and press Enter, or click and drag the
component to the desired location. To close the mini browser without insert-
ing a component, press the Esc key.

• Press and hold the Ctrl key (Cmd key on macOS), then drag an existing
component from the same or a different schematic.

Moving a Component

To move a component, click it with the left mouse button and drag it to the de-
sired location. If the component has connected terminals, the connections are
automatically rerouted to the new location so that the terminals remain con-
nected. To cut any existing connections when moving a component, hold the
Shift key while dragging the component.

Specifying Component Parameters

Every component has a dialog box to view and modify the component param-
eters. To open the parameter dialog, double-click on a component or select the
component and choose Parameters... from the Edit menu or the component’s
context menu.

Most component parameters accept MATLAB expressions as values, provided
that they evaluate to an acceptable result. Parameter expressions are evalu-
ated when you start a simulation or update the Simulink model. In case an er-
ror occurs during evaluation of the parameters, an error dialog appears and the
corresponding component is highlighted.

An exception to this behavior are parameters that affect the appearance of the
component such as the parameter Number of windings of the Mutual Induc-
tor (see page 573) or the parameter Width of the Wire Multiplexer (see page
832). Such parameters must be literal values and are evaluated immediately.
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Integer values may be specified as decimal, binary or hexadecimal values. Hex-
adecimal integers are prefixed by 0x, binary integers are prefixed by 0b. The
expressions 0xfa and 0b11111010, for example, both evaluate to 250.

Using Workspace Variables in Parameter Expressions

Parameter expressions that are not evaluated immediately can include
workspace variables. Expressions are evaluated as a whole in one workspace.
By default, the evaluation workspace is the base Octave or MATLAB
workspace. Notice that in PLECS Standalone every model has its own base Oc-
tave workspace that is populated by the model initialization commands that
can be configured in the Simulation Parameters dialog, see “Model Initializa-
tion Commands” (on page 118).

However, you can define local mask workspaces for subsystems that will then
be used for the parameter evaluation in the underlying schematics. For infor-
mation on subsystem mask workspaces see “Mask Parameters” (on page 76).

In PLECS Blockset you can also mask the Circuit block as a whole. This is nec-
essary e.g. if you want parameter expressions to be evaluated in the Simulink
model workspace instead of the MATLAB base workspace, or when you use the
sim command from within a MATLAB function and want to access the function
workspace. For more information see “Customizing the Circuit Block” (on page
49).
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Displaying Parameters in the Schematic

You can cause PLECS to display any component parameter beneath the com-
ponent name in the schematic. To specify which parameter should be displayed
in the schematic, open the dialog box and check the check box next to the pa-
rameter edit field. Parameter values can be edited in the schematic directly by
double-clicking them.

Changing Parameters of Multiple Components

You can simultaneously change the parameters of multiple components of the
same type. To do so, select the components, then double-click any of them or
choose Parameters... from the Edit menu or the components’ context menu.
Parameters that have different values for the selected components show a
placeholder text multiple values. If you leave this placeholder as is, the com-
ponents retain their individual values for this parameter when you apply any
other changes that you have made.

Changing Parameters During a Simulation

Parameters are evaluated once a new simulation is started. Their values re-
main constant throughout the simulation. Certain parameters can be changed
during the simulation, their value is used as soon as the change is applied. De-
pending on the parameter type it may be necessary to reevaluate other parts of
the model, which may take some extra computation time.
Parameters are changeable during the simulation if they do not change the
structure of the model. If, for example, a parameter value is a vector, the ele-
ments of the vector may be changed, whereas the size of the vector must remain
the same. Parameters that influence the number of terminals of a component or
the width of a signal cannot be changed during simulation.

Changing Component Names

To edit a component name, double-click it in the schematic. Press Enter or click
anywhere outside the label to finish editing. Press Shift+Enter to enter a line
break for component names that span multiple lines. To show or hide a compo-
nent name, toggle Show name in the Format menu.
All component names in the same schematic must be unique and must contain
at least one non-space character. Trailing spaces are removed from the names.
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Placing the Component Label

The label of a component can be placed at any of the following 16 positions
along the component frame: at the four corners, at the center of the four edges
and at two off-center positions of each of the four edges. The label of a Subsys-
tem block can additionally be placed at the center of the component frame.
To change the placement of a label, press the left mouse button and drag it to a
new location. While you hold down the mouse button, small dots mark the pos-
sible positions, and a dashed rectangle indicates the new label position. When
you release the mouse button, the label is moved. The horizontal and vertical
alignment of the label text is automatically adjusted to the label position.

Changing the Orientation of Components

You can change the orientation of a component by choosing one of these com-
mands from the Format menu:
• The Rotate command rotates a component clockwise 90 degrees (Ctrl-R).
• The Flip left/right command flips a component horizontally (Ctrl-F).
• The Flip up/down command flips a component vertically (Ctrl-I).

Disabling Components

If you would like to disable one or more components temporarily so that they do
not affect the behavior of a model, you can do so by commenting them. The term
“commenting” is inspired by the programming pattern of disabling lines of code
by commenting them. There are two possibilities to comment a component:
Comment Out Commenting out a component has the same effect on the
model as deleting the component, leaving the connections that lead to and from
the component unconnected.
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Comment Through For certain types of components it is useful to “close the
gap” when they are commented. For instance, you may want to replace a com-
mented resistor with a short circuit rather than an open circuit.

A commented component is drawn with dimmed colors, and the connections
leading to and from it are also dimmed. If a component is commented through,
solid lines indicate the terminals that are connected with each other, and the
corresponding external connections are not dimmed. This is demonstrated in
the figure below.

L R
Commented
Through C

R
Commented
Out

To comment or uncomment a component interactively, select it and toggle Com-
ment out or Comment through in the Edit menu or the component’s context
menu. To comment or uncomment a component programmatically, use the com-
mand

plecs('set', 'componentPath', 'CommentStatus', 'status')

where status is one of CommentedOut, CommentedThrough or Active.

Getting Component Help

Press the Help button in the dialog box to view the documentation for the com-
ponent.
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Libraries

Libraries enable you to ensure that the custom components or masked subsys-
tems used in your circuit are always up-to-date. Or, the other way round, if you
are developing your own custom components, you can use a library to ensure
that changes you make to your component models are automatically propagated
to a user’s circuit upon loading.

Creating a New Library in PLECS Standalone

Any model file in PLECS Standalone can be used as a library file. Additionally
it is also possible to use PLECS Blockset libraries in PLECS Standalone. To
make model file available as a library the file has to be added to the library list
in the PLECS preferences (see chapter “Configuring PLECS” on page 124 for
details).

To create a new library file, create a new model file, copy the desired compo-
nents into it and save it in a directory on the library path. The library path is
also set in the PLECS preferences.

Creating a New Library in PLECS Blockset

To create a new component library, open the PLECS Extras library and copy
the PLECS Library block into a Simulink model or library. The Simulink model
must be named (i.e. saved) before you can copy components from the component
library.

To add the new library to the library browser it has to be added to the list of
user libraries in the PLECS Preferences (see chapter “Configuring PLECS” on
page 124 for details).

Creating a Library Reference

When you copy a library component – either into a circuit schematic or into an-
other or even the same component library – PLECS automatically creates a ref-
erence component rather than a full copy. You can modify the parameters of the
reference component but you cannot mask it or, if it is already masked, edit the
mask. You can recognize a library reference by the string "(link)" displayed next
to the mask type in the dialog box or by the string "Link" displayed in the title
bar of the underlying schematic windows.
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The reference component links to the library component by its full path, i.e.
the Simulink path of the PLECS Library block and the path of the component
within the component library as they are in effect at the time the copy is made.
If PLECS is unable to resolve a library reference, it highlights the reference
component and issues an error message.

You can fix an unresolved library reference in two ways

• Delete the reference component and make a new copy of the library compo-
nent.

• In PLECS Blockset, add the directory that contains the required Simulink
model to the MATLAB path and reload the circuit.

Updating a Library Reference

Library references are resolved upon loading of a circuit. Afterwards, any
changes that you make to a referenced library component are automatically
propagated to the referencing components when you start a simulation or (in
PLECS Blockset) when you update the simulation model.

Breaking a Library Reference

You can break the link between a library reference and the library component.
The reference then becomes a simple copy of the library component; changes to
the library component no longer affect the copy.

In order to break the link between a reference and its library component, select
the reference component, then choose Break library link from the Subsys-
tem submenu of the Edit menu or the component’s context menu.

It is often desirable to break the links to all user-defined libraries in a model,
for example when sending a model to another PLECS user who does not have
all the libraries that the model depends on. This can be done by selecting
Break all library links... from the Edit menu. Library links to the PLECS
component library are not affected by this functionality.
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Connections

Connections define the relationship and interaction between components.

Signal Connections and Physical Connections

Signals are drawn with green lines ending with an arrow head. They represent
a directed flow of values from the signal output of one component to the signal
input of one or several other components. Values can be either scalars or vec-
tors. The width of a signal is determined when the simulation is started.

Physical connections represent energy flow between two points and do not have
an inherent direction. They are drawn in separate colors for the different phys-
ical domains: black for electrical, red for magnetic, blue for thermal and violet
for mechanical. Physical connections can be created between physical terminals
of the same domain.

Creating Connections

To create a new connection, move the mouse pointer over an unconnected ter-
minal, press the mouse button, and drag the mouse pointer to the desired des-
tination. If you drag the mouse pointer near a matching terminal, the pointer
shape changes to a double cross, and the two terminals will be connected when
you release the mouse button. If you drag the mouse pointer over a component,
the connection will be routed to the nearest matching terminal (if any) of that
component.

Creating Branches

Branches are used to connect more than two terminals. To create a branch con-
nection, place the mouse pointer on an existing connection or node where you
want the branch to start. Press the right mouse button and drag the mouse
pointer to the desired destination. Instead of the right mouse button you can
also use the left mouse button while holding down the Ctrl key.

Alternatively, you can also create a branch by clicking on an unconnected termi-
nal and dragging the mouse pointer to a matching connection or node.
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Automatic Creation of Connections

If you select a component and hold the Alt key while hovering the mouse
pointer over another component, the schematic editor suggests connections be-
tween matching terminals or terminal groups of the two components. A termi-
nal group in this context is a contiguous set of terminals of the same kind along
one edge of a component. To create the connection(s), press the mouse button.
Only one pair of matching terminals or terminal groups is connected at one
time. If there are multiple candidates, the connection with the shortest path
is chosen.

This is illustrated in the figures below. First, the starting component, a voltage
source, is selected. Next, the mouse pointer is moved to the destination compo-
nent, a resistor, while holding down the Alt key. The editor suggests a connec-
tion between the closest two electrical terminals. Last, after a mouse click, the
connection is created, and the editor suggests another connection between the
remaining two terminals.

You can also let the schematic editor create connections from multiple start-
ing components to a single destination component at once. This is useful e.g. to
combine the signal outputs of multiple meters into one Signal Multiplexer (see
page 673). First, select the many components, then move the mouse pointer to
the destination while holding down the Alt key. Press the mouse button to cre-
ate all connections at once.
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Editing Connections

After a connection has been created, you can change its path by moving indi-
vidual segments. To move a connection segment, click it with the left mouse
button, then drag it to the desired destination.
You can also move parallel segments of different connections simultaneously. To
do so, select the connections, then click on any one of the parallel segments and
drag it to the desired destination. The other segments will be shifted simulta-
neously while maintaining their relative distances.

Vectorization

Some models are based on a repetitive structure. Such structures can be im-
plemented in a compact form with the concept of “Vectorization”. For this pur-
pose there is a De-/Multiplexer and Signal Selector component in the controls
domain and a Wire Multiplexer and Wire Selector block in each each physical
domain. These blocks allow to realize series and parallel connections of many
components without actually having to place all components in the schematic.
Besides this, source components can also output vector or bus signals. This way
the circuit structure becomes parameter dependent.

Vectorized Sources

Source components can be vectorized by specifying a vector for one of the pa-
rameters. If a vector is specified for multiple parameters they all need to have
the same length. For example the Phase parameter in the Sine Wave block al-
lows a vector [0,−120, 120].

Sine	Wave
Frequency:	10

Phase:	[0,	-120,	120]

In case of a physical domain the vectorized source components will lead to com-
pletely vectorized circuits.

V:	[1	2	3] R:	1 V:	1 R:	1 V:	2 R:	1 V:	3 R:	1≡
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Signal De-/Multiplexer

In a basic application a signal multiplexer and demultiplexer are used to form
and split bus signals. In the following example the sine wave block outputs a
bus signal of width 3.

Width:	[2	1]

0.5
Sine	Wave

Phase:	[0,	-120,	120]
Scope

3

The Demultiplexer component is used to split the bus signal into a bus signal of
width 2 and a scalar signal. The upper Gain multiplies each component of the
bus signal with 3 and the lower Gain block simply multiplies the scalar signal
with 0.5.

Vectorizing Physical Components

The following example shows how a chain of RC elements can be built using
wire multiplexers.

Non-vectorized RC chain

In a first step the original circuit is built with two wire multiplexer components
of width 4. The first wire that enters the multiplexer leaves the second mul-
tiplexer on the first terminal (indicated with a dot). The same applies for the
input signals 2 to 4.

Because multiplexers can take vectors as Width parameter, the wires 2 to 4 can
be combined. In the third example the two multiplexers use the value [1 3] and
[3 1] for the Width parameter.

The vectorized implementation is a condensed form of the original circuit with
only one resistor and capacitor component. By using a variable for the Width
parameter ([1 n] and [n 1]), the length of the RC chain can be set from the model
initialization commands. The values for the capacitances and resistances have
to be a scalar or a vector with length of the RC chain.
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RC chain built with a wire multiplexer

Vectorized version of the RC chain

Note The input signal to a vectorized switching device of width n can be a
scalar or a vector. If it is a scalar all n switching devices will have the same
(gate) input signal. If the input signal is a vector of length n every element of
the vector is the (gate) input signal to the corresponding switching device.

Annotations

You can annotate schematics with text labels and graphical elements, i.e. boxes,
lines and arrows. Annotations are purely for documentation purposes and have
no influence on the model behavior.

Text Annotations

To create a text annotation, double-click in an unoccupied area of a schematic
and start typing. To finish editing, press the Escape key or click anywhere out-
side the annotation box. You can move a text annotation by selecting and drag-
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ging it with the mouse. To edit an existing annotation, double-click it. While
you are editing an annotation, a toolbar is shown next to it allowing you to
change the style, size, color and alignment of the text.

Box Annotations

To create a box annotation, double-click in an unoccupied area of a schematic
and drag the mouse while holding the mouse button. To move a box annotation,
click on its border and drag it to the desired location. To change the size of a
box annotation, select it by clicking on its border, then drag one of its selection
handles. To change the appearance of a box annotation, double-click on its bor-
der. A toolbar will be shown next to the box allowing you to change the border
width, corner radius, border color and fill color of the box.

Line Annotations

To create a line annotation, press and hold the Shift key while double-clicking
in an unoccupied area of the schematic and dragging the mouse. To move a line
annotation, click on the line and drag it to the desired location. To change the
orientation of a line annotation, select it by clicking on the line, then drag one
of its selection handles. To change the appearance of a line annotation, double-
click on the line. A toolbar will be shown next to the line allowing you to change
the width, style and color of the line and the size and location of arrow heads.
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Subsystems

Subsystems allow you to simplify a schematic by establishing a hierarchy,
where a Subsystem block is on one layer and the elements that make up the
subsystem are on another. Subsystems also enable you to create your own
reusable components. For more information see “Masking Subsystems” (on page
68).

You can create a subsystem in two ways:

• Add a Subsystem block to your schematic, then open that block and add the
blocks it contains to the subsystem.

• Select a number of blocks, then group those blocks into a subsystem.

Creating a Subsystem by Adding the Subsystem Block

To create a new subsystem, first add a Subsystem block to the schematic, then
add the elements that make up the subsystem:

1 Copy the Subsystem block from the System library into your schematic.

2 Double-click on the Subsystem block in order to open it.

3 In the empty Subsystem window, build the subsystem. Use the different port
blocks (e.g. Signal Inport (see page 671), Signal Outport (see page 674) or
Electrical Port (see page 445)) to configure the interface of the subsystem.

Creating a Subsystem by Grouping Existing Blocks

If a schematic already contains the blocks you want to convert to a subsystem,
you can create the subsystem by grouping those blocks:

1 Select the blocks and connections that you want to include in the subsystem
within a bounding box.

2 Choose Create subsystem from the Edit menu. PLECS replaces the se-
lected blocks with a Subsystem block.
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Arranging Subsystem Terminals

When you add a port to a subsystem schematic, a corresponding terminal ap-
pears at a free slot on the border of the Subsystem block. If necessary, the Sub-
system block is resized automatically in order to accommodate the new termi-
nal.

You can move a terminal to another free slot on the border by dragging it with
the middle mouse button. While you hold down the mouse button, a circle
shows the free slot nearest to the mouse pointer. As an alternative you can
press the left mouse button while holding down the Shift key. When you re-
lease the mouse button, the terminal is moved.

The figures below show a Subsystem block before, during and after moving a
terminal.

Notice how the shape of the cursor changes to crosshairs as you move it into
the capture radius of the terminal. When you press and hold down the center
mouse button, the cursor shape changes to a pointing hand.

Resizing a Subsystem Block

To change the size of a Subsystem block, select it, then drag one of its selection
handles. While you hold down the mouse button, a dashed rectangle shows the
new size. When you release the mouse button, the block is resized. The mini-
mum size of a Subsystem block is limited by the number of terminals on each
side.

The figures below show a Subsystem block before, during and after resizing.

Notice how the terminals on the right edge of the Subsystem block are shifted
after you release the mouse button in order to fit into the new frame. The block

66



Subsystems

height cannot be reduced further because the terminals cannot be shifted any
closer.
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Masking Subsystems

Masking a subsystem allows you to create a custom user interface for a Subsys-
tem block that hides the underlying schematic, making it appear as an atomic
component with its own icon and dialog box. Many of the components in the
PLECS component library are in fact masked subsystems.

To mask a subsystem, select the Subsystem block, then choose Create mask...
from the Subsystem submenu of the Edit menu or the block’s context menu.
The mask editor appears. The mask editor consists of five tabbed panes that
are described in detail below.

Mask Icon

The Icon pane enables you to create icons that show descriptive text or labels,
graphics and images.

Mask Editor Icon Tab
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Mask Icon Drawing Language

The Language selector lets you choose the programming language used for
the drawing commands. Choose Lua to create dynamic icons that can change
depending on user input. See “Getting Started with Lua” (on page 84) for a
brief introduction to this language. Choose Legacy to select the syntax used
by PLECS 4.1 and older.

Mask Icon Drawing Commands

The drawing commands available in the Lua language are described below. If
you enter more than one command, the graphic objects are drawn in the order
in which the commands appear. In case an error occurs during evaluation of
the commands, PLECS displays three question marks (? ? ?) in the mask icon;
if you hover the mouse over the subsystem block, a tooltip will show the error
message.

Text
The commands

Icon:text('text')
Icon:text(x, y, 'text')

display text in the center of the icon or centered around the coordinates x, y.
The text does not rotate with the icon; it is always displayed from left to right.
The second command can be followed by parameter/value pairs to specify addi-
tional properties listed in the table below.

Line
The command

Icon:line(xvec, yvec)

draws the line specified by the vectors xvec and yvec. Both vectors must
have the same length. Note that vectors are entered using curly braces, e.g.
{1, 2, 3}. The vectors may contain non-finite values such as 0/0 or 1/0. When
non-finite values are encountered, the line is interrupted and continued at the
next point that has finite values.
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Text Properties

Property Description

FontSize An integer specifying the font size of the text.

TextFormat Specify the string PlainText to display the text as is (the
default) or RichText to enable HTML markup such as
<b></b> or <sup></sup>.

Color – A string specifying the color name (preferred). All
appearance-sensitive “PLECS Colors” (on page 75) are
allowed.

– A vector {r, g, b} of three integers in the range from 0
to 255 specifying the color in RBG format. This color applies
in light mode and is automatically transformed in dark
mode (similar hue, inverted lightness).

– A table {light = {r, g, b}, dark = {r’, g’, b’}}
assigning custom colors in RGB format to each appearance.

Note: The table’s dark mode color defaults to the light
mode color, such that {light = {r, g, b}} results in a
fixed color for all appearances.

Patch
The command

Icon:patch(xvec, yvec)

draws a solid polygon with vertices specified by the vectors xvec and yvec. Both
vectors must have the same length. Note that vectors are entered using curly
braces, e.g. {1, 2, 3}.

Circle
The command

Icon:circle(x, y, r)

draws a circle with the center coordinates x, y and the radius r.
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Ellipse

The command

Icon:ellipse(x, y, rx, ry)

draws an ellipse with the center coordinates x, y and the radii rx and ry.

Arc

The command

Icon:arc(x, y, rx, ry, start, span)

draws an elliptical arc with the center coordinates x, y and the radii rx and ry
beginning at the start angle (in degrees) and extending span degrees counter-
clockwise. The 0 degree angle is at 3 o’clock. Clockwise arcs can be drawn using
a negative span angle.

Color

The commands

Icon:color('colorname')
Icon:color(r, g, b)
Icon:color({r, g, b})
Icon:color({light = {r, g, b}, dark = {r', g', b'}})

change the current drawing color. The new color can be defined by:

• A string colorname specifying the color name (preferred). All appearance-
sensitive “PLECS Colors” (on page 75) are allowed.

• Three integers r, g and b or a vector {r, g, b} of three integers in the range
from 0 to 255 specifying the color in RBG format. This color applies in light
mode and is automatically transformed in dark mode (similar hue, inverted
lightness).

• A table {light = {r, g, b}, dark = {r’, g’, b’}} assigning custom colors
in RGB format to each appearance.
Note: The table’s dark mode color defaults to the light mode color, such that
{light = {r, g, b}} results in a fixed color for all appearances.
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Image

The commands

Icon:image(xvec, yvec, 'filename')
Icon:image(xvec, yvec, 'filename', 'on')

read an image from the file filename and display it on the mask icon.
The parameter filename must be either an absolute filename (e.g.
C:\images\myimage.png) or a relative filename that is appended to the model’s
directory (e.g. images\myimage.png). Supported image formats are BMP, GIF,
JPG and PNG.

The two-element vectors xvec and yvec specify the minimum and maximum
coordinates of the image’s extent. Note that vectors are entered using curly
braces, e.g. {-10, 10}.

Use the optional flag 'on' to indicate that the image should rotate or flip to-
gether with the mask icon. By default, this is set to 'off', and the image orien-
tation remains fixed.

Only one image can be displayed on a mask icon; if you use multiple image com-
mands, only the last one will be effective.

Querying Parameter Values

The command

Dialog:get('variable')

returns the string value of the mask parameter associated with the variable
variable. Note that the parameter values are not evaluated. Thus, if the user
enters e.g. 2*2, the return value will be '2*2' and not '4'. The return value for
a Combo Box parameter is a string containing the integer value of the chosen
option or the expression entered by the user.

Querying Preferences

The command

Preferences:get('Appearance')
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returns the current app appearance as a string, either "light" or "dark". This
can be used for appearance-sensitive drawing commands beyond the normal
color transformation.

The command

Preferences:get('DrawANSI')

returns true if the Symbol format setting is set to ANSI instead of DIN. This
can be used for drawing commands which differ between these formatting con-
ventions.

Legacy Command Syntax
The legacy command syntax is listed in the following table. The meaning of the
command arguments is analogous to the Lua syntax. Vector parameters are
entered using square brackets with optional commas for separating the ele-
ments, e.g. [1, 2, 3] or [3 4 5]. Note that the legacy syntax does not support
all commands and options. Single-line comments start with a percent sign (%).

Legacy Command Syntax

Command Syntax

Text text(’text’)
text(x, y, ’text’)

Line line(xvec, yvec)

Patch patch(xvec, yvec)

Circle circle(x, y, r)

Color color(r, g, b)

Image image(xvec, yvec, imread(’filename’))
image(xvec, yvec, imread(’filename’), ’on’)

Mask Icon Coordinates

All coordinates used by the mask drawing commands are expressed in pixels.
The origin of the coordinate system is always the center of the block icon; it is
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adjusted when the block is resized. In an unrotated and unflipped block, the x-
axis stretches from the left towards the right, and the y-axis stretches from the
top towards the bottom.

Use the icon frame and/or the terminal locations as reference points in order to
position graphic elements. Both the frame and the terminals snap to a grid of
10 by 10 pixels.

Note PLECS expects you to confine icon drawings to the boundaries of the
subsystem frame. PLECS will not clip your drawings to the subsystem frame,
but if you draw outside the frame, the drawings will not be erased properly e.g.
when the subsystem is moved.

Mask Icon Properties

Show subsystem frame
The subsystem frame is the rectangle that encloses the block. It is drawn if
this property is set, otherwise it is hidden.

Hide terminal labels
This property controls whether the terminal labels underneath the icon are
shown or hidden. A terminal label is only shown if this property is unset
and the name of the corresponding port block is visible.

Icon rotates
If drawing commands are provided, this property determines whether the
drawn icon rotates when the component is rotated. The drawn icon remains
stationary if this property is unchecked.
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PLECS Colors

The PLECS palette contains all available appearance-sensitive colors which all
PLECS components use for drawing their block/mask icon.

PLECS Palette

Color name Description

"text" default text color

"electrical" electrical domain color

"signal" signal connection color

"axis" axis color for icons

"thermal" thermal domain color

"thermalBg" thermal domain background

"magnetic" magnetic domain color

"magneticBg" magnetic domain background

"rotational" rotational domain color

"rotationalBg" rotational domain background

"translational" translational domain color

"translationalBg" translational domain background

"event" event connection color

"normalFg" normal foreground

"normalBg" schematic background (configurable in dark mode)
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Mask Dialog

The Dialog pane enables you to define the parameters that will appear in the
dialog box of the masked subsystem.

Mask Editor Dialog Tab

Prompts and Associated Variables

Mask parameters are defined by a Prompt, a Variable and a Type. The
prompt provides information that helps the user identify the purpose of a pa-
rameter. The variable name specifies the variable that will be assigned the pa-
rameter value. The possible parameter types are described in the table below.

Mask parameters appear on the dialog box in the order they appear in the
prompt list. You can add or remove parameters or change their order by using
the four buttons to the left of the prompt list.
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Parameter Types

Type Description

Edit Shows a line edit field. The entered text is interpreted as
a MATLAB/Octave expression and is evaluated when a
simulation is started.

String Shows a line edit field and a selector that controls whether
the entered text is interpreted as a literal string or as a
MATLAB/Octave expression that evaluates to a string.

Combo Box Shows a pop-up menu that allows the user to select an item
from a list of possible options. Use the Combo box values
editor below the parameter list to enter the list of possible
options and their associated values that are assigned to the
parameter variable. The values must be unique integers.

Thermal Shows a thermal parameter editor that allows the user to
specify a thermal description (see section “Thermal Descrip-
tion Parameter” on page 139 for details). If you enter a text
in the Device type filter editor below the parameter list,
the thermal parameter editor will show only thermal de-
scriptions that have the matching device type. Otherwise,
all thermal descriptions will be shown.

Note In PLECS Standalone, the maximum length of variable names is 63
characters. This is due to the way in which a mask workspace is stored in
PLECS and exchanged with Octave. It is advisable to observe this limit also
in PLECS Blockset to ensure that a model can be exchanged with PLECS Stan-
dalone.

Tab Names

You can group parameters into separate tabs shown in the parameter dialog by
assigning a tab name in the Tab column. All parameters that have the same
tab name will appear on the same tab page in the parameter dialog.
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Tunable Parameters

By default, mask parameter values cannot be modified during a simulation.
However, if you check the box in the Tunable column, the corresponding pa-
rameter will be made tunable so that you can in fact modify it interactively dur-
ing a simulation by entering a new value in the parameter dialog. Whenever
you change the parameter, PLECS will re-evaluate the parameter variable and
the mask initialization commands and propagate the new variable values to
the underlying components, which in turn must have tunable parameters. If
a changed variable is used in a non-tunable component parameter, the change
will have no effect until the simulation is restarted.

Dialog Callback

The dialog callback is a Lua function that is executed whenever the user
changes a mask parameter. You can use it to disable or hide a parameter or
change its value depending on the value of another parameter.

Querying Parameter Values

The command

Dialog:get('variable')

returns the string value of the mask parameter associated with the variable
variable. Note that the parameter values are not evaluated. Thus, if the user
enters e.g. 2*2, the return value will be '2*2' and not '4'. The return value for
a Combo Box parameter is a string containing the integer value of the chosen
option or the expression entered by the user.

Setting Parameter Properties

The command

Dialog:set('variable', 'property', value, ...)

changes one or more properties of the mask parameter associated with the vari-
able variable. The properties are listed in the following table.
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Parameter Properties

Property Description

Value A string specifying the parameter value

Enable A Boolean (i.e. true or false) specifying the enable state of the
parameter. A disabled parameter is greyed out in the dialog
and cannot be modified.

Visible A Boolean (i.e. true or false) specifying the visibility of the
parameter in the dialog

Note Parameters that are disabled or invisible are not evaluated, and the pa-
rameter variables are assigned a NaN value (not a number).

Hiding, Showing and Moving Terminals

The command

Block:showTerminal('name', flag)

shows or hides the terminal named name depending on the boolean value flag.
The companion port of a hidden terminal acts in the same way as if the termi-
nal was shown but unconnected.

The command

Block:moveTerminal('name', x, y)

moves the terminal named name to the relative coordinates x, y with respect
to the unrotated and unflipped block. Note that the terminal rotation is not
changed.
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Mask Workspace

Variable Scope

PLECS associates a local variable workspace with each masked subsystem
that has one or more mask parameters defined. Components in the underlying
schematics can access only variables that are defined in this mask workspace.

Initialization Commands

Mask Editor Initialization Tab

Mask initialization commands are defined on the Initialization pane. They are
evaluated in the mask workspace when a simulation is started. You can enter
any valid MATLAB/Octave expression, consisting of MATLAB/Octave functions,
operators, and variables defined in the mask workspace. Variables defined in
the base workspace cannot be accessed. The dialog parameter variables are
listed on the left hand side of the tab.
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You can use mask initialization commands to check the user input, e.g. whether
a variable value is within a certain range, or to define additional workspace
variables that may be derived from mask parameters.

To show an error message in the Diagnostics window, e.g. that a certain mask
parameter value is not valid, use the command

error('error message')

To show a warning message in the Diagnostics window, use the command

plecs('warning','warning message')

Note that the native MATLAB/Octave command warning will only print the
warning message to the MATLAB command window or the Octave console.

Note In PLECS Standalone, the maximum length of variable names is 63
characters. This is due to the way in which a mask workspace is stored in
PLECS and exchanged with Octave. It is advisable to observe this limit also
in PLECS Blockset to ensure that a model can be exchanged with PLECS Stan-
dalone.

Mask Probe Signals

The Probes pane enables you to define the probe signals that the masked sub-
system will provide to the PLECS Probe. Mask probe signals appear in the
probe editor in the order they appear in the mask signal list. You can add or
remove signals or change their order by using the four buttons to the left of the
signal list.

Mask probe signals are defined as vectors of probe signals from components be-
low the subsystem mask. For this reason the controls in the lower half of the di-
alog are identical to those of the probe editor. In order to define a mask signal,
select the signal in the list and then drag the desired components into the dia-
log window. The new components are added to the bottom of the list of probed
components. Next, select the components one by one and enable the desired
component signals in the list on the right side by using the check boxes.
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Mask Editor Probes Tab

Mask Documentation

The Documentation pane enables you to define the descriptive text that is
displayed in the dialog box of the masked subsystem.

Mask Type

The mask type is a string used only for purposes of documentation. PLECS dis-
plays this string in the dialog box and appends "(mask)" in order to differentiate
masked subsystems from built-in components.

Mask Description

The mask description is informative text that is displayed in the dialog box in
the frame under the mask type. Long lines of text are automatically wrapped to
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Mask Editor Documentation Tab

fit into the dialog box. You can force line breaks by using the Enter or Return
key.

Mask Help

The mask help is a URL that provides documentation in addition to that pro-
vided by the mask description. This documentation is shown in a separate win-
dow when the user clicks the Help button in the dialog box of the masked sub-
system. Currently, the following URL types are supported:

Remote URL A URL of the form https://www.plexim.com is opened using
the default browser of your operating system.

Local HTML File A local HTML file is specified with an absolute path (e.g.
file:///C:/absolute/path/helpdoc.html) or with a relative path (e.g.
file:relative/helpdoc.html). A relative path is resolved relative to the par-
ent folder of the model file containing the subsytem. If the subsystem is a li-
brary link or model reference, the relative path is resolved relative to the par-
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ent folder of the source library or model file. Local HTML files are also opened
using the default browser of your operating system.

Unprotecting Masked Subsystems

If you define a mask icon for a Subsystem block, PLECS automatically protects
the block and the underlying schematic. You can no longer resize the Subsys-
tem block or modify the sub-schematic. The purpose of this protection is to pre-
vent the user from making unintentional changes that might render the icon
useless.

If you want to change a masked Subsystem block, you can unprotect it by choos-
ing Unprotect from the Subsystem submenu of the Edit menu or the block’s
context menu. You can later protect it again by choosing Protect from the
same menus.

Getting Started with Lua

Lua is a simple yet powerful open-source scripting language. This section in-
troduces you to the basic concepts that you are likely to need in order to cre-
ate dynamic subsystem masks. For a full reference please visit the Lua site at
http://www.lua.org.

Types and Variables

Lua is a dynamically typed language, which means that types are not associ-
ated with variables but only with values. To define a variable, you simply as-
sign a value to it.

By default, Lua declares all variables as global. However, PLECS executes Lua
code in a protected environment that forbids the creation or modification of
global variables. Therefore, you must explicitly declare variables as local using
the local keyword, e.g.

local a = "a string"

The most basic types in Lua are: nil, boolean, number, string and table. You
can query the type of a value with the function type which returns the type
name as a string.

Nil Nil is a type with the single value nil. It is used to represent the absence
of a useful value.
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Booleans The Boolean type has two values false and true. It can be used in
conditional expressions. If you use other types in conditional expressions, be-
ware that Lua considers only the Boolean false and nil as false and anything
else as true. In particular, both the numerical 0 and the empty string ” or ""
are considered true in conditional tests.

Lua supports the logical operators and, or and not.

Numbers Lua differentiates between (double-precision) floating point num-
bers and (64-bit) integer numbers. Numerals with a decimal point or an expo-
nent are considered floats; otherwise, they are treated as integers.

Strings String literals in Lua can be delimited by single or double matching
quotes:

local a = "a string"
local b = 'another string'

The difference between the two kinds is that inside one kind of quotes you can
use the other kind of quote without needing to escape it. The escape character
is the backslash (\), and the common C escape sequences such as \n for newline
are supported.

Long strings literals are delimited with matching double square brackets that
enclose zero or more equal signs, e.g. [[...]] or [==[...]==]. They can span sev-
eral lines and do not interpret escape sequences.

Tables Tables are Lua’s generic data structuring mechanism. They are used
to represent e.g. arrays, sets or records. A table is essentially an associative ar-
ray that accepts as keys not only numbers or strings but any other value except
nil. A table is constructed with curly braces and a sequence of key/value pairs,
e.g.

a = { x = 10, y = 20 }

A numerical vector as used in the mask icon drawing commands is just a ta-
ble with 1-based consecutive integer keys and numeric values. It can be con-
structed using the shorthand form of omitting the keys and just specifying the
values:

a = { 1, 2, 3 }

Alternatively, a numerical vector can be constructed using the following PLECS
specific syntax extension:
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a = Vector{ 1, 2, 3 }

A vector constructed in this way can be added to or multiplied with a scalar
value. This is especially helpful in icon drawing functions if the graphic object
shall be displaced or scaled:

a_x = Vector{ 1, 2, 3 }*zoom_factor + x_offset
a_y = Vector{ 4, 5, 6 }*zoom_factor + y_offset

Comments

A simple comment starts anywhere with two consecutive hyphens (--) and runs
until the end of the line. Long comments start with two hyphens followed by
two square brackets (--[[) and continue until the first occurrence of two closing
square brackets (]]).

A common trick is to use --]] to end a long comment to quickly comment and
uncomment a block of code:

--[[
Icon:line({-10, 10}, {-10, 10}) -- commented out
--]]

To un-comment the code block, prepend another hyphen to the first line:

---[[
Icon:line({-10, 10}, {-10, 10}) -- will be executed
--]]

In the first example, the --[[ starts a long comment that continues until (and
including) the ]] in the third line. In the second example, the first two hyphens
start an ordinary single-line comment, and so the second line is not commented
out. The two hyphens at the beginning of the third line again start a single-line
comment. Without these hyphens, the unpaired closing square brackets in the
third line would cause a syntax error.

Statements

Lua does not need an explicit separator between consecutive statements, but
you can use a semicolon if you wish. Also, line breaks are treated like ordinary
white space, so you can split a single statement into multiple lines without hav-
ing to use a special continuation mark.

86



Masking Subsystems

Relational Operators

Lua supports the following relational operators:

< > <= >= == ~=

Relational operators always return a Boolean value. The == operator tests for
equality and the ~= operator for inequality. They can be applied to any two val-
ues. If the values have different types, Lua considers them not equal. Other-
wise, they are compared according to their type.

Functions

A function is defined as follows

local function drawTriangle(x, y)
Icon:line(Vector{0, 8.66, -8.66, 0}+x,

Vector{-10, 5, 5, -10}+y)
end

As with variables, the local keyword is required because without it the func-
tion would be declared globally, which PLECS forbids. A function definition
consists of the keyword function, a name (drawTriangle), a list of parameters
(x, y), a body, i.e. a list of statements, and the terminator end. Parameters are
local variables that are initialized with the values of the arguments passed in
the function call.
The example above defines a function that draws a triangle with the center
point x, y. The function can be called as follows

drawTriangle(-10, 0)
drawTriangle(10, 0)

A function can also return values using the return statement:

local function sum(values)
local result = 0
for i = 1, #values do

result = result + values[i]
end
return result

end

local x = sum({1, 2, 3}) -- x will be 6
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Control Structures

Lua provides control structures for conditional execution and iteration.

if then else The if statement tests its condition and executes the then
branch if the condition is true and otherwise the else part. The condition can
result in any value, but as mentioned earlier, Lua treats all values other than
nil and false as true. In particular, both the numerical 0 and the empty string
('') are treated as true.

if Dialog:get('choice') == '1' then
Icon:text('+')

else
Icon:text('-')

end

Multiple conditions can be tested with the elseif statement. It is similar to an
else followed by an if but avoids the need for and extra end:

if Dialog:get('choice') == '1' then
Icon:text('+')

elseif Dialog:get('choice') == '2' then
Icon:text('-')

else
Icon:text('+/-')

end

for The for statement has the following form:

for x = -10, 10, 5 do
Icon:line({x, x}, {-10, 10})

end

The loop variable, x, which is implicitly local to the loop, is successively as-
signed the values from -10 to 10 with an increment of 5, and for each value the
loop body is executed. The result of the example will be five parallel vertical
lines. The step value is optional; if it is omitted, Lua will assume a step value of
1.

Lua also provides other control structures (iterator-based for, while, repeat).
However, these are not relevant for dynamic masks.
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Circuit Browser

The Circuit Browser enables you to navigate a circuit diagram hierarchically.
To display the Circuit Browser, select Show circuit browser from the View
menu of the schematic editor. Note that this option is only available from the
main schematic window, i.e. the Circuit Browser will only be shown once for
every model.

The editor window splits into two panes. The left pane shows the Circuit
Browser, the right pane displays the current schematic. The Circuit Browser
shows either a hierarchical or a flat list of all components and subsystems in
the circuit.

Selecting a component in the Circuit Browser will also select the same com-
ponent in the schematic and vice versa. By dragging the mouse or by holding
down the shift key you can select multiple components. If the selected compo-
nents are compatible with each other, their parameters can be edited simulta-
neously. The parameter dialog is displayed on double clicking the selected com-
ponents or on clicking the option Component parameters. . . from the context
menu.

The schematic is automatically updated to show the last selected component.
The schematic of a specific subsystem can be displayed by double clicking it in
the Circuit Browser.

The components can be sorted by clicking on one of the column headers. To
quickly find e.g. all diodes in a circuit, switch to the flat view (see below) and
sort it by clicking on Type. This will group all diodes together in the list.
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Viewing Options

In the toolbar of the Circuit Browser, several viewing options are available.

View As Tree

The first two buttons in the toolbar switch between hierarchical and flat view.
In the hierarchical (or tree) view, the first entry corresponds to the top-level
schematic of your circuit. A “+” or “–” sign next to a name indicates that the cor-
responding schematic contains one or more subsystems. By double-clicking on
the entry you can expand or collapse the list of these subsystems. This will also
show the schematic of the subsystem.

View As Flat List

The flat view lists all components of the entire circuit except the top-level cir-
cuit itself. This view has an additional column that shows the path of each com-
ponent.

Look Under Masks

By default, the Circuit Browser treats a masked subsystem like a component,
i.e. it will not list the contents of the subschematic. You can change this behav-
ior by toggling this button.

Follow Library Links

By default, the Circuit Browser treats a library link like a component, i.e. it will
not list the contents of the subschematic. You can change this behavior by tog-
gling this button.

Filter

The Filter button lets you choose, which components are shown in the Circuit
Browser. When filtering is turned off, all components are shown. By clicking on
the small arrow symbol, you can select between two filtering modes:
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Show only subsystems When this mode is active, the Circuit Browser
shows only subsystems.

Show assertions When this mode is active, the Circuit Browser shows only
assertion blocks and components with attached assertions (see “Assertions” on
page 94). To view the associated assertion parameters, double-click on the entry
in the Circuit Browser.

Custom filter When this mode is active, a search bar is shown. The Circuit
Browser shows only those components that match the search criterion or all
components if the search string is empty.

The default filtering mode of the Circuit Browser can be specified in the PLECS
preferences (see section “Configuring PLECS” on page 124).
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PLECS Probe

The PLECS Probe enables you to monitor various quantities in a circuit. Most
intrinsic components provide one or more probe signals that describe their cur-
rent state, input, or output signals. For instance, an inductor provides a probe
signal that monitors the inductor current; the probe signals of a diode are the
diode voltage, current and conduction state.
The PLECS Probe can either be used in a PLECS schematic or – for PLECS
Blockset – in a Simulink model. To use the PLECS Probe in a schematic use the
Probe block from the “System” Library.
In order to use the PLECS Probe in Simulink, drag the Probe block from the
PLECS library into the Simulink model that contains the circuit which you
want to probe. Double-click the icon to open the probe editor window.

This window contains the following information.
Probed circuit For the Simulink Probe the text box across the top shows the
name of the circuit that you are probing and its path, i.e. the Simulink system
containing the Circuit block.

Note A Simulink Probe must be in the same Simulink model as the Circuit
block whose components you want to monitor. In addition, a Simulink Probe
block only accepts components from one single Circuit block at a time.

92



PLECS Probe

Probed components The list box on the left side shows the components
that you have selected for probing. The components are identified by their type,
name and path within the circuit. For adding components to this list, simply se-
lect them in the schematic editor and drag them into the probe editor. The new
components are appended at the bottom of the list. You can reorder the com-
ponents using the Up , Down and Remove buttons. If you click on the
Show component button, the currently selected component will be shown
in the schematic editor.
Component signals The list box on the right side shows the available probe
signals for the selected component. Use the check boxes next to the signal
names in order to enable or disable individual signals. You can simultaneously
edit the signal states of several components provided that the components have
the same type. In order to select multiple components, hold the Shift or Ctrl
key while clicking on a list entry.
For PLECS Probes that are used in a PLECS schematic there are two ways to
add components to the probe: Either drag them into the Probed components
area in the probe dialog (see above) or drop them onto the Probe block directly.
The output of the Probe block is a vector signal consisting of all enabled probe
signals. If no probe signal is enabled, the block will output a scalar zero.

Copying a Probe

When you copy a PLECS Probe in a PLECS schematic, one of the following
three cases can apply:

1 If a probed component is copied simultaneously with a Probe block referring
to it, the copied Probe block will refer to the copy of the component.

2 Else, if the Probe block is copied within the same circuit, the copied Probe
block will refer to the original component.

3 Else (i.e. if the Probe block is copied into a different circuit), the probe refer-
ence will be removed.

For technical reasons it is not possible to determine whether a PLECS Probe for
Simulink is copied simultaneously with a Circuit block. Therefore, PLECS only
distinguishes between the following two cases:

1 If you copy a Simulink Probe block within the same model, the copied Probe
block will always refer to the original components.

2 If you copy a Probe block into a different model, all data is cleared from the
copied block.
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Assertions

Assertions allow you to monitor arbitrary signals during a simulation and raise
a warning or error message if they fail to meet a given condition. For instance,
imagine you want to ensure that a certain component operates within a safe
temperature range. Once the temperature leaves the defined operating range,
you would like to receive a notification. In PLECS, this can be achieved using
assertions.

Assertions are conditions that are assumed to hold during the entire simula-
tion of a model. When a condition becomes invalid, i.e. when an assertion fails,
PLECS executes a predefined action. The possible actions are:

• to ignore the failed assertion
• to add a warning message to the diagnostics window
• to add a warning message to the diagnostics window and additionally

pause the simulation
• to add an error message to the diagnostics window and immediately stop

the simulation

There is a global model parameter that allows you to override the actions de-
fined locally in the individual assertions (see “Simulation Parameters” on page
111).

Note In PLECS Standalone, assertions are partially disabled during analy-
ses (see “Analysis Tools” on page 179) and simulation scripts (see “Simulation
Scripts” (on page 253)). In a Steady-State Analysis, assertions are only enabled
during the final period shown at the end of the analysis. Assertions are not al-
lowed to pause the Steady-State analysis, but it may be aborted if an assertion
triggers an error message. In all other analyses, assertions are entirely dis-
abled. Assertions are not allowed to pause a simulation script, but a script may
be aborted if an assertion raises an error message.

PLECS provides two kinds of assertions: built-in assertion blocks and asser-
tions that can be established on components based on their probe signals.

94



Assertions

Assertion Blocks

There is one basic Assertion block (see page 367) that interprets its input signal
as a boolean value. While the value is non-zero, the assertion holds; whenever
the input becomes zero, the assertion fails.

Because assertions are often used to ensure that a signal is within a certain
range or below or above a certain limit, PLECS provides additional assertion
blocks to directly do this. These blocks are:

• Assert Dynamic Lower Limit (see page 364)
• Assert Dynamic Range (see page 365)
• Assert Dynamic Upper Limit (see page 366)
• Assert Lower Limit (see page 368)
• Assert Range (see page 369)
• Assert Upper Limit (see page 370)

Component Assertions

PLECS also provides the possibility to add assertions directly to components.
This can be used to define a valid range for any probe signal of a component.
To add assertions to a component, open its parameter dialog and click on the
Assertions tab. If the parameter dialog of a component does not provide this
tab, it is not possible to add assertions.

Use the “+” and “-” buttons to add or remove assertions. In the different
columns, the parameters for the assertions can be provided: the probe signal
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that is limited by the assertion, the lower and upper limits, whether the lim-
its should be inclusive, and the action executed when the assertion fails (see
above). If the limits are included (by setting a check mark in that column), the
limits themselves are considered part of the valid range, otherwise the signal
has to be strictly within the limits. The values -inf and inf may be used to dis-
able the lower or upper limit, respectively.

Locating Assertions

To quickly get an overview of all assertions that are defined in a model, open
the Circuit Browser (see page 89) and set the filter option to Show assertions.
The Circuit Browser will then list only assertion blocks and components, for
which assertions have been defined.
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Controlling Access to Circuits and Subsystems

PLECS allows you to control user access to individual subsystems or to com-
plete circuits. In particular, you can prevent a user from viewing or modifying a
schematic while still allowing the user to simulate a circuit.

To change the access settings of a circuit, open the permissions dialog box by
choosing Circuit permissions... from the File menu. To change the settings of
a subsystem, choose Permissions... from the Subsystem submenu of the Edit
menu or the block’s context menu.

You can grant or deny the following privileges:

• The View privilege controls whether a user can view the schematic of a cir-
cuit or subsystem.

• The Modify privilege controls whether a user can modify the schematic of
a circuit or subsystem. For a subsystem it also controls whether the mask
definition may be modified.

If you apply access restrictions, you will be asked for a password to prevent an
unauthorized person from lifting these restrictions. The access settings can
only be changed again if the correct password is provided.

Encrypting Circuits and Subsystems

When PLECS saves a circuit with access restrictions to a model file, it encrypts
the respective sections to protect the circuit description from unauthorized ac-
cess.
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Exporting Schematics

PLECS allows you to export the schematic to a bitmap or PDF file for documen-
tation. The supported image formats are:

• JPEG (Bitmap)
• TIFF (Bitmap)
• PNG (Bitmap)
• SVG (Scalable Vector Graphics)
• PDF (Portable Document Format)

To export a schematic choose Export... from the File menu and select your de-
sired output format. A second dialog lets you specify the export options for the
specific format, e.g. the bitmap resolution.

It is also possible to copy schematics to other applications directly via the clip-
board. To copy an image of the current schematic to the clipboard choose Copy
as image from the Edit menu, then select Paste from the Edit menu in your
target application.
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Using the PLECS Scope

The PLECS scope is used to display simulation results and offers powerful
zooming and analysis tools to simplify viewing and processing results. The
PLECS scope can be placed on the Simulink worksheet or in the PLECS circuit.
The appearance of the PLECS scope is depicted below. The scope contains a plot
area and optional Zoom view, Saved view and Data view windows.

Getting Started

To use the scope, drag the scope block from the PLECS library onto your work-
sheet or schematic diagram. The scope block for Simulink can be found in the
top level of the PLECS library. The scope block for a PLECS circuit is located in
the PLECS Sources & Meters library.
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Double clicking on the Scope block opens the Scope window. The main window
of the scope can contain multiple plots. Plots can be quickly added or removed
by right clicking the plot area and selecting Insert plot above, Insert plot
below or Remove plot from the context menu.
The optional Zoom view, Saved view and Data view windows can be opened
by right-clicking on the toolbar area. They can also be opened from the View
menu. These optional windows can be docked and undocked from the main win-
dow. To dock them in main window, simply drag them to the desired location
inside the main window.

Legend

You can show a legend on top of each plot by choosing Show legend from the
View menu or from the context menu. The default text of a signal label is de-
rived from the name of the block from which the signal originates and possibly
a probe signal name. To modify the text, double-click on a label. If you erase the
complete label text, the default text is restored.

Zoom Operations

Zooming is performed by clicking on the plot area and dragging the mouse un-
til the desired area is selected. Two zoom modes exist: Constrained Zoom and
Free Zoom. The zoom mode is selected using the toolbar button. To temporarily
switch zoom modes, the Ctrl key (cmd key with macOS) can be pressed.

Constrained Zoom

With Constrained Zoom, zooming is only performed in the x or y direction. The
zoom direction is selected by moving the mouse horizontally or vertically.

Free Zoom

With Free Zoom mode activated, the zoom area is defined by dragging the zoom
cursor over a certain portion of the plot.

Zoom to Fit

Zoom to fit will fit the entire waveform into the plot window.
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Zoom to Specification

A zoom range can also be manually specified. Double-clicking on the x or y axis
opens a dialog in which the x or y range of the zoom area can be entered.

Previous View, Next View

Every time a zoom action is performed, the view is stored in the view history.
The previous and next view buttons allow you to navigate backwards and for-
wards through the view history.

Panning

A zoom area can be panned by dragging the x or y axes of the plot with the
hand symbol that appears.

Zoom Area Window

The zoom area window displays the entire waveform and highlights the zoom
view that is displayed in the plot window. Constraint Zoom and Free Zoom can
also be performed in the zoom area window. The zoom area window is activated
by right clicking on the toolbar.

Scrolling

During a simulation, if the current x-axis range is smaller than the simulation
time span, the scope will automatically scroll the x-axis so that the current sim-
ulation time step is always shown. The scrolling mode (paged or continuous)
may be specified in the scope parameters.

Scrolling is suspended if you manually zoom or pan so that the current simu-
lation time is greater than the right x-axis limit. This is indicated by a stack of
small arrows at the right border of the plot. Scrolling is resumed if you click on
these arrows or if you zoom or pan so that the current simulation time is less
than the right x-axis limit.
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Y-Axis Auto-Scaling

The scope features a dynamic auto-scaling mode, in which the y-axis limits
are always adjusted to the currently visible waveforms. The state of the auto-
scaling mode is indicated by a small semi-transparent icon ( / ) in the top-
right corner of a plot. Clicking on this icon will toggle the state. Auto-scaling
will be enabled for all plots in the scope if you click the Zoom to Fit button. If
you zoom in the y direction of a plot, auto-scaling will be disabled for that plot.
The initial auto-scale state at simulation start is specified for each plot individ-
ually in the scope parameters (see page 664).

Changing Curve Properties

By default, the curves for the different signals and/or traces in a plot are drawn
with a pen that is defined by the palette selected in the PLECS preferences (see
“Scope Colors” on page 126).

To change individual curve properties (color, line style and width), right-click
on a plot and select Edit curve properties from the context menu. This will
open a table listing the properties of all visible curves. To change a particular
property, double-click on the corresponding table cell.

Locally changed properties are highlighted with a white background and are
stored persistently in the model file. In contrast, properties that are defined by
the global scope palette have a grey background. To remove all local changes
click on Restore Defaults.

Spreading Signals

When using a single plot to display multiple signals that assume only a small
number of discrete values (such as gate signals), it can be difficult to properly
see the value that a particular signal has. You can have the scope automati-
cally separate the signals in a plot by offsetting and scaling them appropriately.
All signals are scaled by the same factor and the offsets are distributed evenly
in order to maintain the proportions between the signal. Vertical scrolling and
zooming is disabled in this mode.

To enable signal spreading, right-click on a plot and select Spread signals
from the context menu. While spreading is enabled, the y-axis will only display
the zero-lines for the individual signals, and zooming in the y-direction is dis-
abled.
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Cursors

The cursors are used for measuring waveform values and analyzing the sim-
ulation results. Cursors can be positioned by dragging them to a specific time
location, or by manually entering a value in the Time row in the Data Window.

When the cursors are moved, they will snap to the nearest simulation time
step. To place the cursors arbitrarily, hold down the Shift key while moving
the cursor. The values in the data window will be displayed in italics to indicate
they are interpolated from the two nearest time steps.

Data Window

When the cursors are activated, the data window appears if it was not already
open. By default, the data window displays two columns in which the time and
data value of each signal at the position of each cursor are given. The signal
names are also displayed and can be modified by double-clicking on the name.

A right-click into the Data Window shows a context menu. Selecting “Copy to
Clipboard” copies the current contents of the table to the system clipboard. Af-
terwards the data can be pasted into other applications, e.g. a spreadsheet tool
or word processor.

Signal Type

A small icon that represents the signal type is shown next to the signal name
in the data view window. Signals can be of the continuous, discrete or impulse
type. The scope automatically determines the signal type from the port settings
of the connected signal to ensure the signal is displayed correctly. The signal
type can be overridden if necessary by clicking on the signal type icon.

Analyzing Data

Right-clicking on the data view header line in the data view window allows for
additional data analysis columns to be displayed. For example, difference, RMS,
min, max, and total harmonic distortion (THD) analysis can be performed. The
analysis is performed on the data between the two cursors. For meaningful
RMS and THD values the cursor range must be equal to the period of the fun-
damental frequency.
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Locking the Cursors

Locking the cursors can be useful for performing measurements over a fixed
time period, such as the time period of an ac voltage. When dragging one of
the locked cursors, the other cursor will be moved in parallel at a specified time
difference. To lock the cursors, the Delta column in the Data Window must be
made visible by right-clicking on the table header. The desired cursor distance
can be entered in the Time row of the Delta column. The cursors can be un-
locked by double-clicking on the lock icon in the Delta column.

Fourier Analysis

A Fourier analysis of the data in the current cursor range is accessible from the
View menu. The use of the Fourier analysis is detailed in section “Using the
Fourier Analysis” (on page 106).

Saving a View

A particular zoom view can be saved by pressing the eye button. The saved
views window will appear if it was not already displayed and the new view will
be added to the saved views list. To access a particular saved view, click on the
view name in the saved views window. Saved views can be renamed by double
clicking the name of the view, and reordered by clicking and dragging an entry
up and down in the list. A view can be removed with the red delete button.

Adding Traces

After a simulation has been completed the resulting curves can be saved as a
trace. Traces allow to compare the results of different simulation runs.

A new trace is added by either pressing the Hold current trace button in the
toolbar or by pressing the green plus button next to the Current Trace entry
in the Traces window. To remove a trace press the red minus button next to the
trace in the Traces window. Held traces can be reordered by clicking and drag-
ging an entry up and down in the list.

Traces can also be added and removed by simulation scripts. For details, see
section “Holding and Clearing Traces in Scopes” (on page 274).
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Saving and Loading Trace Data

Existing traces in a scope can be saved by selecting Save trace data... from
the File menu. The saved traces can be loaded into a scope for later reference.
The scope into which the trace data is loaded must have the same number of
plots as the scope from which the data was saved. The number of input signals
per plot should also match, otherwise the trace data is lost when a new simula-
tion is started.

Scope Parameters

The scope parameters dialog allows for the appearance of the scope to be
changed and automatic or custom zoom settings to be applied to the x and y
axes. More information can be found in the parameter description of the Scope
block (see page 664). The plot background color can be changed in the PLECS
preferences (see section “Configuring PLECS” on page 124).

Printing and Exporting

A plot can be printed or exported from the File menu. When printing, the ap-
pearance of the plot and legend can be changed using the Page Setup option.
When exporting, the plot style can also be changed and the output size of the
image can be customized.

The data table can be exported to e.g. Microsoft Excel using the clipboard. To
copy the data to the clipboard open the context menu by right-clicking and
choose "Copy to clipboard".
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Using the Fourier Analysis

The Fourier Analysis is available from the View menu in the PLECS scope win-
dow.

The Fourier analysis window shows the magnitude of the Fourier coefficients
for the given number of harmonics. The analysis range for the Fourier analysis
is determined by the cursors in the scope window. By default it is assumed that
the cursor range covers exactly one period of the base frequency, though this
can be changed in the Fourier parameters. Note that spectral leakage effects
will be visible if the cursor time range is not an exact integer multiple of the
inverse base frequency.

Calculation Parameters

Base Freqency
The analysis range T is always bound to the cursor range in the PLECS
scope. In general it consists of n periods of the base frequency, i.e. T = n

f0
.

A click on the frequency input field f: in the window title bar opens the Base
Frequency dialog. Two modes are available to set the base frequency: by
freely positioning the cursors in the PLECS scope or by entering the numer-
ical values directly in the Base Frequency dialog.

The first mode is activated by selecting Calculate from cursor range
in the Base Frequency dialog. In this mode it is assumed that the cursor
range covers a single base period. The two cursors can be positioned inde-
pendently from each other and should be set as exactly as possible to the
start and end of a single base period. The corresponding base frequency is
displayed in the window toolbar.

If the base frequency is known beforehand, it can be entered directly by
choosing Set base frequency. In this mode the scope cursors are locked
to the number of base periods. Moving the cursors still allows you to select
the analysis range without changing the base frequency.

Number of Fourier Coefficients
The number of Fourier Coefficients which are calculated can be changed in
the input field N: in the window title bar.
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Display Parameters

Display frequency axis
The frequency axis is either shown underneath each plot or underneath the
last plot only.

Frequency axis label
The text is shown below the frequency axis.

Scaling
The Fourier analysis window offers three options to scale the Fourier coeffi-
cients: Absolute, linear displays the absolute value of each coefficient. Ab-
solute, logarithmic displays the common logarithm of the absolute values,
multiplied by 20. Relative, linear scales all coefficients such that the coef-
ficient of the base frequency is 1. When set to Relative, logarithmic (dB)
the coefficients are displayed on a logarithmic scale in Decibels relative to
the coefficient of the base frequency.

Table data
The table below the Fourier plots shows the calculated Fourier coefficients.
The values can be displayed without phase (Magnitude only), with phase
values in radians (Magnitude, phase (rad)) or with phase values in de-
gree (Magnitude, phase (degree)).

The following items can be set for each plot independently:

Title
The name which is displayed above the plot.

Axis label
The axis label is displayed on the left of the y-axis.

Y-limits
The initial lower and upper bound of the y-axis. If set to auto, the y-axis is
automatically scaled such that all data is visible.

Signal Type

As in the scope window the signal type in the Fourier analysis window can be
changed by clicking the small icon next to the signal name in the data view
window. Available types are bars, stems and continuous. By default the signals
are displayed as bars. Changing the signal type for one signal will affect all sig-
nals in the same plot.
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Zoom, Export and Print

The Fourier analysis window offers the same zoom, export and print operations
as the PLECS scope. See section “Using the PLECS Scope” (on page 99) for de-
tails.

Calculation of the Fourier coefficients

The following approximation is made to calculate the Fourier coefficients of a
signal with variable sampling intervals ∆Tm:

F(n) =
2

T

ˆ

T

f(t)e−jω0ntdt ≈ 2

T

∑
m

ˆ

∆Tm

fm(t)e−jω0ntdt

where

fm(t) = amt+ bm for continuous signals

fm(t) = bm for discrete signals

A piecewise linear approximation is used for continuous signals. Compared to
a fast Fourier transformation (FFT) the above approach also works for signals
which are sampled with a variable sample rate. The accuracy of this approxi-
mation highly depends on the simulation step size, ∆Tm: A smaller simulation
step size yields more accurate results.
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Using the XY Plot

The XY plot is used to display the relationship between two signals, x and y. In
every simulation step the x and y input signals are taken as coordinates for a
new point in the XY plot. You can choose to draw trajectories by connecting con-
secutive points with a direct line, to draw a vector from the origin to the current
point or a combination of both.

Time Range Window

The time range window allows you to restrict the data that is used for plotting.
The window is accessible from the View menu.

The time range can be modified by moving its left and right boundary. The in-
active time range is grayed out. By clicking into the time range, the active time
range can be shifted without changing its length. Any change of the time range
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is reflected in the XY plot immediately. If vectors are drawn, the right end of
the time range determines the position of the vector head.

If a time range is specified in the XY plot parameters, it is used as the default
width of the time range in the time range window. A detailed parameter de-
scription is available in the XY Plot documentation (see page 834).

Zoom, Save View, Export and Print

The XY plot offers the same zoom, export and print operations as the PLECS
scope. See section “Using the PLECS Scope” (on page 99) for details.
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Simulation Parameters

PLECS Standalone Parameters

This section describes the simulation parameters available for PLECS Stan-
dalone. For the PLECS Blockset simulation parameters please refer to the fol-
lowing section (see page 118).

To open the parameter dialog, select Simulation parameters from the Simu-
lation menu of the schematic editor or press Ctrl-E.

Simulation Time

Start Time The start time specifies the initial value of the simulation time
variable t at the beginning of a simulation, in seconds (s). If a simulation is
started from a stored system state (see “System State” on page 117), this pa-
rameter is ignored and the simulation time specified in the system state is used
instead.

Time Span The simulation ends when the simulation time has advanced by
the specified time span.

Solver

These two parameters let you choose between variable-step and fixed-step
solvers. A fixed-step solver uses the same step size – i.e. the simulation time
increment – throughout a simulation. The step size must be chosen by the user
so as to achieve a good balance between accuracy and computational effort.

A variable-step solver can adopt the step size during the simulation depending
on model dynamics. At times of rapid state changes the step size is reduced to
maintain accuracy; when the model states change only slowly, the step size is
increased to save unnecessary computations. The step size can also be adjusted
in order to accurately simulate discontinuities. For these reasons, a variable-
step solver should generally be preferred.

DOPRI is a variable-step solver using a fifth-order accurate explicit Runge-
Kutta formula (the Dormand-Prince pair). This solver is most efficient for non-
stiff systems and is selected by default. A stiff system can be sloppily defined as
one having time constants that differ by several orders of magnitudes. Such a
system forces a non-stiff solver to choose excessively small time steps. If DOPRI
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detects stiffness in a system, it will abort the simulation with the recommenda-
tion to switch to a stiff solver.

RADAU is a variable-step solver for stiff systems using a fifth-order accurate
fully-implicit three-stage Runge-Kutta formula (Radau IIA). For non-stiff sys-
tems DOPRI is more efficient than RADAU.

If auto is selected, PLECS starts a simulation with DOPRI and automatically
switches to RADAU if the system is found to become stiff during a simulation.
This is the default choice for a variable-step solver.

The fixed-step solver Discrete does not actually solve any differential equa-
tions but just advances the simulation time with fixed increments. If this solver
is chosen, the linear state-space equations of the physical model are discretized
as described in section “State-Space Discretization” (on page 35). All other con-
tinuous state variables are updated using the Forward Euler method. Events
and discontinuities that occur between simulation steps are accounted for by a
linear interpolation method.

Variable-Step Solver Options

Max Step Size The maximum step size specifies the largest time step that
the solver can take and should not be chosen unnecessarily small. If you sus-
pect that the solver is missing events, try reducing the maximum step size.
However, if you just require more output points for smoother curves, you should
increase the refine factor (see below).

Initial Step Size This parameter can be used to suggest a step size to be
used for the first integration step. The default setting auto causes the solver
to choose the step size according to the initial state derivatives. You should only
change this parameter if you suspect that the solver is missing an event at the
beginning of a simulation.

Tolerances The relative and absolute specify the acceptable local integration
errors for the individual state variables according to

erri ≤ rtol · |xi|+ atoli

If all error estimates are smaller than the limit, the solver will increase the
step size for the following step. If any error estimate is larger than the limit,
the solver will discard the current step and repeat it with a smaller step size.

The default absolute tolerance setting auto causes the solver to update the ab-
solute tolerance for each state variable individually, based on the maximum ab-
solute value encountered so far.
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Refine factor The refine factor is an efficient method for generating addi-
tional output points in order to achieve smoother results. For each successful
integration step, the solver calculates r − 1 intermediate steps by interpolating
the continuous states based on a higher-order polynomial. This is computation-
ally much cheaper than reducing the maximum step size (see above).

Fixed-Step Solver Options

Fixed step size This parameter specifies the fixed time increments for the
solver and also the sample time used for the state-space discretization of the
physical model.

Circuit Model Options

Diode Turn-On Threshold This parameter globally controls the turn-on be-
havior of line commutated devices such as diodes, thyristors, GTOs and sim-
ilar semiconductors. A diode starts conducting as soon as the voltage across
it becomes larger than the sum of the forward voltage and the threshold volt-
age. Similar conditions apply to the other line commutated devices. The default
value for this parameter is 0.

For most applications the threshold could also be set to zero. However, in cer-
tain cases it is necessary to set this parameter to a small positive value to pre-
vent line commutated devices from bouncing. Bouncing occurs if a switch re-
ceives an opening command and a closing command repeatedly in subsequent
simulation steps or even within the same simulation step. Such a situation can
arise in large, stiff systems that contain many interconnected switches.

Note The Diode Turn-On Threshold is not equivalent to the voltage drop
across a device when it is conducting. The turn-on threshold only delays the
instant when a device turns on. The voltage drop across a device is solely de-
termined by the forward voltage and/or on-resistance specified in the device pa-
rameters.

Disc. method This parameter determines the algorithm used to discretize
the state-space equations of the electro-magnetic model.
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ZC step size This parameter is used by the Switch Manager when a non-
sampled event (usually the zero crossing of a current or voltage) is detected.
It controls the relative size of a step taken across the event. The default is 1e-9.

Tolerances The error tolerances are used to check whether the state vari-
ables are consistent after a switching event. The defaults are 1e-3 for the rel-
ative tolerance and 1e-6 for the absolute tolerance.

Sample times

Synchronize fixed-step sample times This option specifies whether
PLECS should attempt to find a common base sample rate for blocks that spec-
ify a discrete sample time.

Use single base sample rate This option specifies whether PLECS should
attempt to find a single common base sample rate for all blocks that specify a
discrete sample time.

These options can only be modified for a variable-step solver; for a fixed-step
solver they are checked by default. For details see section “Multirate Systems”
(on page 41).

State-space calculation

Use extended precision When this option is checked, PLECS uses higher-
precision arithmetics for the internal calculation of the state-space matrices for
a physical model. Check this option if PLECS reports that the system matrix is
close to singular.

Remove unused state-space outputs When this option is checked, PLECS
removes the output equations for physical meters that are not used in the
model in order to avoid unnecessary calculations. You may need to uncheck this
option if you want to calculate state-space matrices in a simulation script, see
“Extraction of State-Space Matrices” (on page 191). This option is unchecked in
old models created with PLECS 4.7 or older and checked in new models created
with PLECS 4.8 or newer.

Enable state-space splitting When this option is checked, PLECS will at-
tempt to split the state-space model for a physical domain into smaller indepen-
dent models that can be calculated and updated individually. This can reduce
the calculation effort at runtime, which is particularly advantageous for real-
time simulations.
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Display state-space splitting When this option is checked, PLECS will is-
sue diagnostic messages that highlight the components that make up the indi-
vidual state-space models after splitting. This is useful e.g. in order to connect
Model Settings blocks in the appropriate places (see Electrical Model Settings
on page 444, Rotational Model Settings on page 641 and Translational Model
Settings on page 774).

Data types

Use floating-point data type for fixed-point signals When this option is
enabled, PLECS will replace all fixed-point data types with the target floating-
point data type (see “Data Types” (on page 43)).

Assertions

Assertion action Use this option to override the action that is executed when
an assertion fails (see Assertion block on page 367). The default is use local
settings, which uses the actions specified in each individual assertion. Asser-
tions with the individual setting ignore are always ignored, even if this option
is different from use local settings. Note that during analyses and simula-
tion scripts, assertions may be partly disabled (see “Assertions” on page 94).

Algebraic loops

Method Use this option to select the strategy adopted by the nonlinear equa-
tion solver. Currently, either a line search method or a trust region method can
be used.

Tolerance The relative error bound. The solver updates the block outputs it-
eratively until the maximum relative change from one iteration to the next and
the maximum relative residual of the loop equations are both smaller than this
value.

Diagnostics

Division by zero This option determines the diagnostic action to take if
PLECS encounters a division by zero in a Product block (see page 618) or a
Function block (see page 459). A division by zero yields ±∞ or nan („not a num-
ber”, if you divide 0/0). Using these values as inputs for other blocks may lead
to unexpected model behavior. Possible choices are ignore, warning and error.
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In new models, the default is error. In models created with PLECS 3.6 or ear-
lier, the default is warning.

Datatype overflow This option determines the diagnostic action to take if
PLECS encounters a data type overflow. PLECS can issue an error or a warn-
ing message or can continue silently. In the latter two cases, the result is han-
dled according to the individual data type overflow handling setting of the
block. If the individual setting is Assert with error, PLECS always issues
an error message.

Datatype inheritance conflict This option allows to apply less strict data
type inheritance rules (see “Data Types” (on page 43)). In new models, the de-
fault is error. In models created with PLECS 4.7 or earlier, the default is warn-
ing.

Continuous sample time conflict This option determines the diagnostic ac-
tion to take if PLECS detects a continuous sample time conflict (see “Continu-
ous Sample Time Conflicts” on page 40). In new models, the default is error. In
models created with PLECS 4.7 or earlier, the default is warning.

Negative switch loss This option determines the diagnostic action to take if
PLECS encounters negative loss values during the calculation of switch losses
(see “Loss Calculation” on page 135). PLECS can issue an error or a warning
message or can continue silently. In the latter two cases, the losses that are in-
jected into the thermal model are cropped to zero.

Stiffness detection This parameter only applies to the non-stiff, variable-
step DOPRI solver. The DOPRI solver contains an algorithm to detect when
a model becomes „stiff” during the simulation. Stiff models cannot be solved
efficiently with non-stiff solvers, because they constantly need to adjust the step
size at relatively small values to keep the solution from becoming numerically
unstable.

If the DOPRI solver detects stiffness in model, it will raise a warning or error
message depending on this parameter setting with the recommendation to use
the stiff RADAU solver instead.

Max. number of consecutive zero-crossings This parameter only applies
to variable-step solvers. For a model that contains discontinuities (also termed
„zero-crossings”), a variable-step solver will reduce the step size so as to make
a simulation step precisely at the time when a discontinuity occurs (see “Event
Detection Loop” on page 34). If many discontinuities occur in subsequent steps,
the simulation may come to an apparent halt without actually stopping because
the solver is forced to reduce the step size to an excessively small value.
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This parameter specifies an upper limit for the number of discontinuities in
consecutive simulation steps before PLECS stops the simulation with an error
message that shows the responsible component(s). To disable this diagnostic,
set this parameter to 0.

Algebraic loop with state machines This option determines the diagnos-
tic action to take if PLECS detects an algebraic loop that includes a State Ma-
chine (see page 692). This may lead to unexpected behavior because the State
Machine will be executed multiple times for the same simulation step during
the iterative solution of the algebraic loop. Possible choices are ignore, warning
and error. The default is error.

System State

This parameter controls how the system state is initialized at the beginning of
a simulation. The system state comprises

• the simulation time,
• the values of all physical storage elements (e.g. inductors, capacitors, thermal

capacitances),
• the conduction states of all electrical switching elements (e.g. ideal switches,

diodes),
• the values of all continuous and discrete state variables in the control block

diagram (e.g. integrators, transfer functions, delays),
• custom state information of C-Script blocks

Block parameters When this option is selected, the state variables are ini-
tialized with the values specified in the individual block parameters.

Stored system state When this option is selected, the state variables are ini-
tialized globally from a previously stored system state; the initial values speci-
fied in the individual block parameters are ignored. This option is disabled if no
state has been stored.

Store system state... Pressing this button after a transient simulation run
or an analysis will store the final system state along with a time stamp and an
optional comment. When you save the model, this information will be stored in
the model file so that it can be used in future sessions.
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Note Adding, removing, renaming, changing path (when moving in or out
of a subsystem) or changing the number of internal states of blocks that have
continuous or discrete state variables associated with them will invalidate the
stored system state.

Model Initialization Commands

The model initialization commands are executed when a simulation is started
in order to populate the base workspace. You can use variables defined in the
base workspace when specifying component parameters (see “Specifying Com-
ponent Parameters” on page 52).

Note The maximum length of variable names is 63 characters. This is due to
the way in which a workspace is stored in PLECS and exchanged with Octave.

PLECS Blockset Parameters

This section describes the simulation parameters available in PLECS Blockset
for Simulink. For the PLECS Standalone simulation parameters please refer to
the next section (see page 111).

To open the parameter dialog, select PLECS parameters from the Simula-
tion menu of the schematic editor.

Circuit Model Options

Diode Turn-On Threshold This parameter globally controls the turn-on be-
havior of line commutated devices such as diodes, thyristors, GTOs and sim-
ilar semiconductors. A diode starts conducting as soon as the voltage across
it becomes larger than the sum of the forward voltage and the threshold volt-
age. Similar conditions apply to the other line commutated devices. The default
value for this parameter is 1e-3.

118



Simulation Parameters

For most applications the threshold could also be set to zero. However, in cer-
tain cases it is necessary to set this parameter to a small positive value to pre-
vent line commutated devices from bouncing. Bouncing occurs if a switch re-
ceives an opening command and a closing command repeatedly in subsequent
simulation steps or even within the same simulation step. Such a situation can
arise in large, stiff systems that contain many interconnected switches.

Note The Diode Turn-On Threshold is not equivalent to the voltage drop
across a device when it is conducting. The turn-on threshold only delays the
instant when a device turns on. The voltage drop across a device is solely de-
termined by the forward voltage and/or on-resistance specified in the device pa-
rameters.

Type This parameter lets you choose between the continuous and discrete
state-space method for setting up the physical model equations. For details
please refer to section “Physical Model Equations” (on page 29).

When you choose Continuous state-space, PLECS employs the Simulink
solver to solve the differential equations and integrate the state variables. The
Switch Manager communicates with the solver in order to ensure that switch-
ing occurs at the correct time. This is done with Simulink’s zero-crossing detec-
tion capability. For this reason the continuous method can only be used with a
variable-step solver.

In general, the default solver of Simulink, ode45, is recommended. However,
your choice of circuit parameters may lead to stiff differential equations, e.g.
if you have large resistors connected in series with inductors. In this case you
should choose one of Simulink’s stiff solvers.

When you choose Discrete state-space, PLECS discretizes the linear state-
space equations of the physical model as described in section “State-Space Dis-
cretization” (on page 35). All other continuous state variables are updated us-
ing the Forward Euler method. This method can be used with both variable-
step and fixed-step solvers.

Discrete State-Space Options

Sample time This parameter determines the rate with which Simulink sam-
ples the circuit. A setting of auto or -1 means that the sample time is inherited
from the Simulink model.
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Refine factor This parameter controls the internal step size which PLECS
uses to discretize the state-space equations. The discretization time step ∆t is
thus calculated as the sample time divided by the refine factor. The refine factor
must be a positive integer. The default is 1.

Choosing a refine factor larger than 1 allows you to use a sample time that is
convenient for your discrete controller while at the same time taking into ac-
count the usually faster dynamics of the electrical system.

Disc. method This parameter determines the algorithm used to discretize
the state-space equations of the electro-magnetic model.

ZC step size This parameter is used by the Switch Manager when a non-
sampled event (usually the zero crossing of a current or voltage) is detected.
It controls the relative size of a step taken across the event. The default is 1e-9.

Tolerances The error tolerances are used to check whether the state vari-
ables are consistent after a switching event. The defaults are 1e-3 for the rel-
ative tolerance and 1e-6 for the absolute tolerance.

Diagnostics

Zero crossing detection disabled In order to accurately determine the
proper switching times of power semiconductors, PLECS highly depends on the
solver’s capability to locate zero crossings. If you switch off the zero crossing
detection in the Simulink solver or use the less accurate “Adaptive” detection
algorithm, PLECS will therefore issue a diagnostic message. This option allows
you to specify the severity level (warning or error) of this message.

If you encounter problems due to many consecutive zero crossings, it is usu-
ally not advisable to modify the zero crossing detection settings. Consecutive
zero crossings are often caused by insufficient simulation accuracy, typically
in conjunction with a stiff model. In this case it may help to tighten the rela-
tive tolerance of the Simulink solver (from the default 1e-3 to 1e-5 or 1e-6) and
to switch from the default solver ode45 to a stiff solver such as ode23tb and,
where applicable, set the Simulink solver option Solver reset method to Ro-
bust.

Number of consecutive gate signal changes If you configure a Signal In-
port block (see page 671) in a top-level schematic to be a gate signal, PLECS
expects this signal to change only at discrete instants. If instead the signal
changes in more than the specified number of consecutive simulation time
steps, PLECS will issue an error message to indicate that there may be a prob-
lem in the gate signal generator. You can disable this diagnostic by entering 0.
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Division by zero This option determines the diagnostic action to take if
PLECS encounters a division by zero in a Product block (see page 618) or a
Function block (see page 459). A division by zero yields ±∞ or nan („not a num-
ber”, if you divide 0/0). Using these values as inputs for other blocks may lead
to unexpected model behavior. Possible choices are ignore, warning and error.
In new models, the default is error. In models created with PLECS 3.6 or ear-
lier, the default is warning.

Datatype overflow This option determines the diagnostic action to take if
PLECS encounters a data type overflow. PLECS can issue an error or a warn-
ing message or can continue silently. In the latter two cases, the result is han-
dled according to the individual data type overflow handling setting of the
block. If the individual setting is Assert with error, PLECS always issues
an error message.

Datatype inheritance conflict This option allows to apply less strict data
type inheritance rules (see “Data Types” (on page 43)). In new models, the de-
fault is error. In models created with PLECS 4.7 or earlier, the default is warn-
ing.

Continuous sample time conflict This option determines the diagnostic ac-
tion to take if PLECS detects a continuous sample time conflict (see “Continu-
ous Sample Time Conflicts” on page 40). In new models, the default is error. In
models created with PLECS 4.7 or earlier, the default is warning.

Algebraic loop with state machines This option determines the diagnos-
tic action to take if PLECS detects an algebraic loop that includes a State Ma-
chine (see page 692). This may lead to unexpected behavior because the State
Machine will be executed multiple times for the same simulation step during
the iterative solution of the algebraic loop. Possible choices are ignore, warning
and error. The default is error.

Negative switch loss This option determines the diagnostic action to take if
PLECS encounters negative loss values during the calculation of switch losses
(see “Loss Calculation” on page 135). PLECS can issue an error or a warning
message or can continue silently. In the latter two cases, the losses that are in-
jected into the thermal model are cropped to zero.

Assertion action Use this option to override the action that is executed when
an assertion fails (see Assertion block on page 367). The default is use local
settings, which uses the actions specified in each individual assertion. Asser-
tions with the individual setting ignore are always ignored, even if this option
is different from use local settings. Note that during analyses and simula-
tion scripts, assertions may be partly disabled (see “Assertions” on page 94).
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Use floating-point data type for fixed-point signals When this option is
enabled, PLECS will replace all fixed-point data types with the target floating-
point data type (see “Data Types” (on page 43)).

Sample times

Synchronize fixed-step sample times This option specifies whether
PLECS should attempt to find a common base sample rate for blocks that spec-
ify a discrete sample time.
Use single base sample rate This option specifies whether PLECS should
attempt to find a single common base sample rate for all blocks that specify a
discrete sample time.
These options can only be modified for a Continuous State-Space model; for a
Discrete State-Space model they are checked by default. For details see section
“Multirate Systems” (on page 41).

Algebraic loops

Method Use this option to select the strategy adopted by the nonlinear equa-
tion solver. Currently, either a line search method or a trust region method can
be used.
Tolerance The relative error bound. The solver updates the block outputs it-
eratively until the maximum relative change from one iteration to the next and
the maximum relative residual of the loop equations are both smaller than this
value.

State-space calculation

Use extended precision When this option is checked, PLECS uses higher-
precision arithmetics for the internal calculation of the state-space matrices for
a physical model. Check this option if PLECS reports that the system matrix is
close to singular.
Remove unused state-space outputs When this option is checked, PLECS
removes the output equations for physical meters that are not used in the
model in order to avoid unnecessary calculations. You may need to uncheck this
option if you want to calculate state-space matrices in a simulation script, see
“Extraction of State-Space Matrices” (on page 202). This option is unchecked in
old models created with PLECS 4.7 or older and checked in new models created
with PLECS 4.8 or newer.
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Enable state-space splitting When this option is checked, PLECS will at-
tempt to split the state-space model for a physical domain into smaller indepen-
dent models that can be calculated and updated individually. This can reduce
the calculation effort at runtime, which is particularly advantageous for real-
time simulations.

Display state-space splitting When this option is checked, PLECS will is-
sue diagnostic messages that highlight the components that make up the indi-
vidual state-space models after splitting. This is useful e.g. in order to connect
Model Settings blocks in the appropriate places (see Electrical Model Settings
on page 444, Rotational Model Settings on page 641 and Translational Model
Settings on page 774).

Simulink Coder

Target This option specifies the code generation target that is used when you
generate code with the Simulink Coder. For details on the available targets see
section “Code Generation Targets” (on page 293).

Inline circuit parameters for RSim target This option controls whether
PLECS inlines parameter values or whether it should keep them tunable when
it creates code for the RSim target. For details see section “Tunable Circuit Pa-
rameters in Rapid Simulations” (on page 295).
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Configuring PLECS

The PLECS configuration parameters can be modified per user in the PLECS
Preferences dialog. Choose the menu entry Preferences... from the File menu
(PLECS menu on macOS) to open it.

General

The language used by PLECS can be specified in the Language field. PLECS
uses the language settings of your computer as default setting. Available lan-
guages are English and Japanese. To activate the new language settings,
PLECS must be restarted.

The setting Symbol format controls whether resistors and capacitors are
drawn in DIN or ANSI style. The table below shows the different component rep-
resentation for both settings.

DIN ANSI

When the Grid setting is set to on, a grid is displayed in the background of
schematic windows for easier placement of components and their connections.

The Circuit browser default setting specifies the default filtering mode used
for all circuit browsers (see section “Circuit Browser” on page 89).

The Appearance controls the color scheme used by PLECS. You can choose be-
tween the classic light scheme and the new dark scheme that is designed to
work well in a low-lit environment. On macOS, you can also let PLECS dynami-
cally adapt to the system default of your computer.

When PLECS is used in dark mode, the darkness of the schematic background
can be scaled by the option Dark background.

When a Diff is shown in a Diff result window, by default the left view shows
the "before" model and the right view the "after" model. Using the Diff result
window option, you can swap the views. Note that swapping the views only
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changes their location in the window and has no influence on the roles of the
"before" and "after" models.

The maximum amount of memory that is used by PLECS during the simula-
tion can be controlled with the setting Cache size limit. Once PLECS reaches
the memory limit it will discard earlier computation results which may have
to be recalculated later during the simulation. On the other hand the value
should not be higher than about one third of the physical memory of the com-
puter where PLECS is running, otherwise the simulation performance may be
degraded due to swapping.

In PLECS Standalone the Thread limit specifies the maximum number of
threads that may be used by an individual interactive analysis or an individ-
ual parallel simulation or analysis command. This can be further reduced using
simulation or analysis options.

In PLECS Standalone the RPC interface can be enabled or disabled for ex-
ternal scripting. When enabled, PLECS listens on the specified TCP port for
incoming RPC connections. See chapter “RPC Interface in PLECS Standalone”
(on page 262) for details on using the RPC interface.

When starting PLECS, a Welcome screen is shown if enabled.

When opening a model, PLECS can reopen all scope windows that were open
when the model was saved. The option Scope windows enables or disables
this behavior.

If PLECS crashes, a crash report dialog is shown with an error message and the
possibility to send a report to Plexim to help investigate the cause of the crash.
The online help of PLECS is shown in a separate process called "webengine"
that also shows a crash report dialog if it crashes. You can disable the crash
report dialog for the second process using the option Crash report dialog.

Libraries

To add custom libraries to the library browser add these libraries in the User
libraries settings. All custom libraries must be located on the library search
path, which is defined differently depending on the PLECS edition:

• For PLECS Standalone the library search path can be changed in the
Search path settings on the same preferences page.

• For PLECS Blockset the custom libraries must be located on the MATLAB
search path. The MATLAB search path can be set from the MATLAB file
menu. The Search path settings are not available in the PLECS Blockset
preferences.
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If the checkbox Show library link indicators is checked, PLECS will display
a small hollow curved arrow ( ) in the lower left corner of each component that
links back to a library. A right-click on this link indicator opens a context menu
that allows you to break the library link or show the original component in the
library browser.

Note To create a new component library in PLECS Blockset, you need to copy
the PLECS Library block from the PLECS Extras library into a Simulink model
or library. For details on creating custom libraries see also section “Libraries”
(on page 57).

Thermal

The setting Thermal description search path contains the root directories
of the thermal library. See section “Thermal Library” (on page 140) for more
details.

Scope Colors

The Scope background setting determines whether the PLECS scopes are
drawn with a black or white background.

The Scope palette setting determines the appearance of the curves inside the
PLECS scopes. To create a new custom palette, select any existing palette and
click on Duplicate. To remove a palette, click on Remove. Note that the de-
fault palette is read-only and cannot be removed.

The Signals group box lists the base properties used for the curves in a scope
plot. You can specify color, line style and line width individually for each curve.
If a plot contains more curves than the number of entries in this list, PLECS
will restart at the beginning. The default palette specifies six solid, one pixel
wide line styles.

The Distinguish traces by setting specifies how different traces for a specific
signal are distinguished from each other (see “Adding Traces” on page 104). In
the default palette, traces are distinguished by brightness, i.e. by using differ-
ent shades of the base color. In custom palettes, you can alternatively distin-
guish traces by varying the color, line style or width. The selected property will
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then not be available in the signal list. Again, if a plot has more traces than the
number of entries in this list, PLECS will restart at the beginning.

Update

PLECS can be configured to check for updates every time it is started. If the
computer running PLECS is located behind a firewall, it may be necessary to
configure proxy settings. These settings can be determined automatically or
entered manually.

The Server name configures the fully qualified domain name or the IP address
of the HTTP proxy server. Leave empty to disable proxy usage.

The Server port configures the TCP port of the HTTP proxy server.

The Proxy user configures the username to use for proxy authentication.
Leave empty to disable proxy authentication.

The Proxy password configures the password for proxy authentication.

Note To check for updates PLECS sends its version to the PLEXIM update
server. No further personal information is transmitted.

Coder

For more information about the PLECS Coder, see “Code Generation” (on page
279).

The setting Target support packages path lets you specify a folder which
PLECS searches for target support packages for the PLECS Coder. A target
support package enables the PLECS Coder to generate code that is specific for a
particular target such as the PLECS RT Box.

The table Installed targets lists the support packages that are installed in
the specified folder. PLECS automatically searches the folder when you start it.
To refresh the list after you have installed a new target, click on the Refresh
button.
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Installing Extensions

The functionality of PLECS can be extended using packages called exten-
sions. Two extensions are available: WBS (Web-Based Simulation) and PIL
(Processor-In-the-Loop). To install and configure these extensions, the Exten-
sions dialog can be used: in PLECS, click on the menu entry PLECS Exten-
sions... from the File menu.

WBS allows the visitor of a web page to run PLECS simulations interactively
in a web browser. The simulation models are provided by a PLECS simulation
server. PLECS Standalone can be used as a simulation server on the local com-
puter. No additional WBS license is needed as long as this feature is used only
for development and test purposes; for the deployment of the web service a sep-
arate server license is required. The PLECS WBS framework contains the nec-
essary files to set up the web service. Please see the accompanying documenta-
tion within the framework.

The PIL approach allows to run code on an embedded controller that is syn-
chronized with the simulation in PLECS. The necessary framework files for
generating suitable embedded applications can be installed by users that have
a separate PIL license.
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The dialog shows the available frameworks shipped with the current PLECS
release in the lower part and the already installed frameworks in the upper
part. To extract a framework an installation path has to be specified once (at
the top of the dialog). Select the desired version from the available frameworks
and click on Install selected.
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Thermal Modeling

Thermal management is an important aspect of power electronic systems and
is becoming more critical with increasing demands for compact packaging and
higher power density. PLECS enables you to include the thermal design with
the electrical design at an early stage in order to provide a cooling solution suit-
able for each particular application.

Heat Sink Concept

The core component of the thermal library is an idealized heat sink (see page
474) depicted as a semitransparent box in the figure below. A heat sink absorbs
the thermal losses dissipated by the components within its boundaries. At the
same time, a heat sink defines an isotherm environment and propagates its
temperature to the components which it encloses.

Diode Module IGBT Module

Brake
Resistor

Brake
Chopper

Tm m

Rth T: 60

Heat conduction from one heat sink to another or to an ambient temperature is
modeled with lumped thermal resistances and capacitances that are connected
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to the heat sinks. This approach allows you to control the level of detail of the
thermal model.

Implementation

Each heat sink has an intrinsic thermal capacitance versus the thermal refer-
ence node. All thermal losses absorbed by the heat sink flow into this capaci-
tance and therefore raise the heat sink temperature. Heat exchange with the
environment occurs via the external connectors.

HeatSink

Heatsink

temperature

K

Thermal

losses

You may set the intrinsic capacitance to zero, but then you must connect the
heat sink either to an external thermal capacitance or to a fixed temperature,
i.e. the Constant Temperature block (see page 393) or the Controlled Tempera-
ture block (see page 401).

Thermal Loss Dissipation

There are two classes of intrinsic components that dissipate thermal losses:
semiconductor switches and ohmic resistors.

Semiconductor Losses

Power semiconductors dissipate losses due to their non-ideal nature. These
losses can be classified as conduction losses and switching losses. For complete-
ness the blocking losses due to leakage currents need to be mentioned, but they
can usually be neglected.
Semiconductor losses are specified by referencing a thermal data sheet in the
component parameter Thermal description. See section “Thermal Descrip-
tion Parameter” (on page 139) and “Thermal Library” (on page 140) for more
details.
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Conduction Losses

The conduction losses can be computed in a straightforward manner as the
product of the device current and the device voltage. By default the on-state
voltage is calculated from the electrical device parameters as v = Vf +Ron · i.

However, PLECS also allows you to specify the on-state voltage used for the
loss calculation as an arbitrary function of the device current and the device
temperature: v = von(i, T ). You may also specify additional custom function ar-
guments. This function is defined in the Conduction loss tab of the thermal
description as a 2D look-up table or a functional expression (see “Thermal Edi-
tor” on page 142).
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A setting of 0V for a single temperature and current value means no conduc-
tion losses. If you do not specify a thermal description in the device parameters,
the default will be used, i.e. the losses are calculated from the electrical device
parameters.

Note If you specify the Thermal description parameter, the dissipated ther-
mal power does not correspond to the electrical power that is consumed by the
device. This must be taken into account when you use the thermal losses for
estimating the efficiency of a circuit.
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Switching Losses

Switching losses occur because the transitions from on-state to off-state and
vice versa do not occur instantaneously. During the transition interval both the
current through and the voltage across the device are substantially larger than
zero which leads to large instantaneous power losses. This is illustrated in the
figure below. The curves show the simplified current and voltage waveforms
and the dissipated power during one switching cycle of an IGBT in an inverter
leg.
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In other simulation programs the computation of switching losses is usually
challenging because it requires very detailed and accurate semiconductor mod-
els. Furthermore, very small simulation time-steps are needed since the du-
ration of an individual switching transition is in the order of a few hundred
nanoseconds.

In PLECS this problem is bypassed by using the fact that for a given circuit the
current and voltage waveforms during the transition and therefore the total
loss energy are principally a function of the pre- and post-switching conditions
and the device temperature: E = Eon(vblock, ion, T ), E = Eoff(vblock, ion, T ). You
may also specify additional custom function arguments. These functions are
defined in the tabs Turn-on loss and Turn-off loss of the thermal editor as 3D
look-up tables or functional expressions (see “Thermal Editor” on page 142) .

A setting of 0 J for a single voltage, current and temperature value means no
switching losses.
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Note Due to the instantaneous nature of the switching transitions, the dissi-
pated thermal energy cannot be consumed electrically by the device. This must
be taken into account when you use the thermal losses for estimating the effi-
ciency of a circuit.

Loss Calculation

As described above, the conduction and switching losses are defined by means
of look-up tables. From these tables the actual losses are calculated during
a simulation using linear interpolation if the input values (on-state current,
pre- and post-switching current or voltage, junction temperature) lie within the
specified index range. If an input value lies out of range, PLECS will extrapo-
late using the first or last pair of index values.

If the calculated loss value is negative, PLECS will issue a diagnostic message
and/or crop the value to zero. You can select the diagnostic action to be taken
with the diagnostic parameter Negative switch loss in the simulation pa-
rameters dialog (see “PLECS Standalone Parameters” on page 111 and “PLECS
Blockset Parameters” on page 118).
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Supported Devices

Semiconductor components that implement this loss model are

• the Diode (see page 411),
• the Thyristor (see page 739),
• the GTO (see page 466),
• the GTO with Diode (see page 468),
• the IGBT (see page 482),
• the IGBT with Diode (see page 502),
• the Reverse Blocking IGCT (see page 508),
• the Reverse Conducting IGCT (see page 510),
• the MOSFET (see page 564),
• the MOSFET with Diode (see page 567) and
• the TRIAC (see page 792).

In addition, the Set/Reset Switch (see page 666) is also included in this group to
enable you to build your own semiconductor models.

Ohmic Losses

Ohmic losses are calculated as i2 · R resp. u2/R. They are dissipated by the fol-
lowing components:

• the Resistor (see page 630),
• the Variable Resistor with Variable Series Inductor (see page 820),
• the Variable Resistor with Constant Series Inductor (see page 817),
• the Variable Resistor with Variable Parallel Capacitor (see page 818) and
• the Variable Resistor with Constant Parallel Capacitor (see page 816).

Heat Sinks and Subsystems

By default, if you place a subsystem on a heat sink, the heat sink temperature
is propagated recursively into all subschematics of the subsystem. All thermal
losses dissipated in all subschematics flow into the heat sink. In some cases
this is not desirable.
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The implicit propagation mechanism is disabled if a subschematic contains one
or more heat sinks or the Ambient Temperature block (see page 360). This lat-
ter block provides a thermal connection to the heat sink enclosing the parent
subsystem block.

Cathode

Anode

Vf: Vf

R: Ron

L: Lrr R: RL V K * v_Lf(u)

f(u): K*u

R: Roff

AiD

VvAC

Ambient

f(u)

vAC*iD

As an example the figure above shows the subschematic of the Diode with Re-
verse Recovery (see page 413). By default, this diode model would only dissi-
pate the ohmic losses from the three resistors and the conduction losses of the
internal ideal diode. However, the losses from the reverse recovery current in-
jected by the current source would be neglected because current sources (and
also voltage sources) do not dissipate thermal losses.

The Diode with Reverse Recovery therefore uses a Controlled Heat Flow block
(see page 400) to inject the electrical power loss into the thermal model via the
Ambient Temperature block. The power loss is calculated by multiplying the
device voltage and the device current.

Temperature Initialization

The state variables of a thermal model are the temperatures of thermal capaci-
tances, and like other state variables they need to be initialized with a starting
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value. For this purpose the Thermal Capacitor (see page 728) and other com-
ponents that implicitly contain thermal capacitances have a parameter Initial
temperature that allows you to specify this starting value.

However, you can also let PLECS calculate the initial value for you based on
other temperatures in the thermal system. To do so, simply leave the parame-
ter blank or enter nan (a floating point constant standing for “Not A Number”).
At the beginning of a simulation, PLECS will perform a “DC analysis”, treat-
ing thermal capacitances with known initial values like constant temperature
sources and calculating the unknown initial values such that the system would
be in steady state.

As an example, consider the following thermal system consisting of a constant
temperature source and three thermal R/C pairs. If you leave the Initial tem-
perature parameter of the three capacitances blank, all three will “inherit”
the starting temperature from the source. On the other hand, if you leave only
the parameters of the first two capacitances blank and specify an initial value
of 125 for the third one, PLECS will initialize the first capacitance with T0 =
25+(125−25)· 2

2+3+5 = 45 and the second one with T0 = 25+(125−25)· 2+3
2+3+5 = 75.

Of course, as soon as the simulation starts, the temperatures in all three capac-
itances will eventually drop to the temperature of the source.
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Thermal Description Parameter

Most semiconductor components in PLECS have a parameter Thermal de-
scription. Also, masked subsystems can have mask parameter of type Ther-
mal (see “Mask Dialog” on page 76). Thermal parameters can be used in two
ways:

• to select a data sheet from the thermal library or
• to assign the value of a reference variable that is defined e.g. as a thermal

mask parameter or in the base workspace.

Selecting Thermal Data Sheets

To select a data sheet from the thermal library, choose the menu entry From
library.... This will open a submenu that shows all data sheets that match the
device type; e.g. in the dialog box of a thyristor only those data sheets appear
that have their Type field set to Thyristor.

Selecting a data sheet from a thermal library

If no data sheet is available, the menu entry is disabled. See section “Thermal
Library” (on page 140) for more information on how to create new data sheets.

Using Reference Variables

To use a reference variable in the Thermal description parameter, select the
menu entry By reference from the parameter menu. Afterwards, the reference
variable can be entered in the text field.
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The reference variable can be the variable name of a Thermal mask parameter
in the mask definition of a parent Subsystem (see “Mask Dialog” on page 76).
The reference variable can also be a string specifying a thermal description file.
The string must begin with file: followed by the file path of the data sheet. It
is possible to use an absolute file path to a thermal description file including the
.xml extension, for example:

thLosses = 'file:C:\Thermal\Vendor\mydiode.xml'

Alternatively, the name of a data sheet from the thermal library can be speci-
fied. In this case the data sheet must be on the thermal search path. Its name
must be provided as a relative path without the .xml extension, for example:

thLosses = 'file:Vendor/mydiode'

Thermal Library

PLECS uses a library of thermal data sheets for semiconductors. The data
sheets of the thermal library are created and edited with the thermal editor
(see “Thermal Editor” on page 142). By separating the thermal descriptions of
semiconductors from their electrical behavior it is possible to use specific pa-
rameters from semiconductor manufactures for thermal simulations in conjunc-
tion with the generic electrical switch models from PLECS.

Library Structure

PLECS uses directory names to hierarchically organize the data sheets in the
thermal library. The reference to a data sheet consists of its relative path and
its filename starting from the directories on the thermal search path.
The search path for thermal libraries is specified in the PLECS preferences (see
section “Configuring PLECS” (on page 124)). Each search path entry is the root
directory for a library tree. On program startup PLECS searches each root di-
rectory in the search path recursively for .xml files and merges the available de-
scriptions into one logical structure. The accessible data sheets can be updated
manually by pressing the Rescan button in the PLECS preferences window. If
a new data sheet is created and saved below a directory which is already on the
search path, the library is updated automatically.
A common way to organize data sheets within a thermal library is to use the
manufacturer name as the first directory level and the part number as the file-
name of the data sheet.
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Global and Local Data Sheets

In addition to the global library search paths specified in the Preferences win-
dow PLECS searches a private directory for each model. This allows for shar-
ing models with other users without the need to synchronize the whole ther-
mal library. The private directory is located in the same directory as the model
file. Its name is the name of the model file (without the .mdl or .plecs exten-
sion) plus a suffix _plecs, e.g. plSMPS_CCM_plecs for model plSMPS_CCM.mdl
(plSMPS_CCM.plecs).

If a library file with the same relative path is found both in the global and the
local library, the file from the local library is used.

Creating New Data Sheets

To create a new thermal data sheet, choose Thermal description... or Ther-
mal package description... from the New... submenu of the File menu.

The data sheet should be saved on the thermal search path, otherwise it will
not be added to the thermal library and cannot be accessed.

Browsing the Thermal Library

PLECS allows for browsing the thermal library with the Thermal library
browser. It is invoked from the Window menu.

The tree view on the left shows all local and global data sheets of the thermal
library for the current model.
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Thermal Editor

The Thermal Editor is used for creating, viewing and editing thermal data
sheets. To create a new data sheet, choose Thermal description... or Ther-
mal package description... from the New... submenu of the File menu. In
order to access the data sheet in a PLECS model, you must save it in a direc-
tory on the thermal search path. See section “Thermal Library” (on page 140)
for details of the structure of the thermal library.

Existing library data sheets can be edited either in the Thermal library
browser (accessible from the Window menu) or by assigning a data sheet to
a semiconductor in the Thermal description parameter and then selecting
the menu entry Edit....
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The top row of the Thermal Editor window shows three input elements:

Manufacturer, Part number These text fields are for documentation pur-
poses only.

Type This string is used by the Thermal Description parameter of semi-
conductor devices and thermal mask parameters to filter matching thermal de-
scriptions (see “Selecting Thermal Data Sheets” on page 139).

Thermal Description for a Single Device

When you edit the thermal description of a single device, the editor shows the
following tabs:

Turn-on loss, Turn-off loss, Conduction loss On these tabs you define the
switching and conduction losses of the device. See “Editing Switching Losses”
(on page 143) and “Editing Conduction Losses” (on page 144).

Therm. impedance On this tab you define the thermal impedance between
the junction and the case of the device. See “Editing the Thermal Equivalent
Circuit” (on page 145).

Constants On this tab you define custom constants that can be used in the
loss formulae for switching and conduction losses.

Variables On this tab you define custom variables that can be used in the
loss formulae for switching and conduction losses. Custom variables can be
edited in the parameter dialog of the component using the thermal description
(see “Specifying custom variable values” on page 147). On this tab you can also
specify hard limits both for your custom variables and for intrinsic variables,
i.e. the blocking voltage, the device current and the junction temperature.

Custom tables On this tab you define custom lookup tables that may be used
to define device losses.

Comment This tab provides you with a text field that you may use for docu-
mentation purposes.

Editing Switching Losses

Switching losses are defined on the Turn-on loss and Turn-off loss tabs. The
Computation method popup specifies whether the loss function is defined as
a 3D lookup table, a functional expression or a combination of both.

If you select Lookup table, the pane below will show a 3D lookup table with
the blocking voltage, the device current and the junction temperature as input
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variables. For more information regarding lookup tables see “Editing Lookup
Tables” (on page 148).

If you select Formula, the pane below will show a text field that allows you to
enter a functional expression. A formula may consist of numerical constants
including pi, arithmetic operators (+ - * / ˆ), mathematical functions (abs,
acos, asin, atan, atan2, cos, cosh, exp, log, log10, max, min, mod, pow, sgn, sin,
sinh, sqrt, tan, and tanh), brackets and the function arguments. The default
function arguments are the blocking voltage v, the device current i and the
junction temperature T. You may define additional function arguments on the
Variables tab (see “Adding Custom Variables” on page 146. You may also ref-
erence custom lookup tables using the function lookup (see “Adding Custom
Lookup Tables” on page 148).

If you select Lookup table and formula, the pane below will show both
lookup table and formula field. With this method, an energy E is first computed
from the lookup table and may then be used in the formula to calculate the final
loss energy value. For instance, in order to quickly increase the switching loss
by 20%, you could enter 1.2*E into the formula field.

Editing Conduction Losses

Conduction losses are defined by means of the on-state voltage drop on the
Conduction loss tab. The Computation method popup specifies whether
the voltage drop is defined as a 2D lookup table, a functional expression or a
combination of both.

If you select Lookup table, the pane below will show a 2D lookup table with
the device current and the junction temperature as input variables. For more
information regarding lookup tables see “Editing Lookup Tables” (on page 148).
On using the import wizard for constructing lookup table data from vendor
plots, see “Import data from plot images” (on page 155).

If you select, Formula, the pane below will show a text field that allows you
to enter a functional expression. The default function arguments are the de-
vice current i and the junction temperature T. You may define additional func-
tion arguments on the Variables tab (see “Adding Custom Variables” on page
146. You may also reference custom lookup tables using the function lookup
(see “Adding Custom Lookup Tables” on page 148).

If you select Lookup table and formula, the pane below will show both
lookup table and formula field. With this method, a voltage v is first computed
from the lookup table and may then be used in the formula to calculate the final
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voltage drop value. For instance, in order to quickly increase the voltage drop
by 20%, you could enter 1.2*v into the formula field.

Gate Dependent Conduction Losses

A MOSFET can conduct current in both directions, and so the conduction losses
of a MOSFET with integrated anti-parallel diode depend on the gate signal
when the current flows in reverse direction. To account for this effect, you can
provide two separate conduction loss definitions, one of which is used when the
gate signal is non-zero, and the other, when the gate signal is zero.

To create separate tabs that define the conduction losses with respect to the
gate signal, select the MOSFET with Diode device type, right-click on the
tab bar and select Use gate dependent conduction losses from the context
menu.

Editing the Thermal Equivalent Circuit

The thermal equivalent circuit of a component describes its physical structure
in terms of thermal transitions from the junction to the case. Each transition
consists of a thermal resistor and a thermal capacitor. They can be edited on
the Therm. impedance tab of the thermal editor. The thermal equivalent cir-
cuit is specified either in Cauer or Foster form.

The structure of a Cauer network is shown in the figure below. In the thermal
editor the number of chain elements n and the values for Ri in (K/W) and Ci in
(J/K) for each chain element need to be entered.

Cauer network

The figure below illustrates the structure of a Foster network. In the thermal
editor the number of chain elements n and the values for Ri in (K/W) and τi in
(s) for each chain element need to be entered. Foster networks can be converted
to Cauer networks by pressing the button Convert to Cauer.
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Foster network

Note Internally, PLECS always uses the Cauer network to calculate the ther-
mal transitions. Foster networks are converted to Cauer networks at simula-
tion start. Strictly speaking, this conversion is only accurate if the temperature
at the outer end of the network, i.e. the case, is held constant. For practical pur-
poses the conversion should yield accurate results if the external thermal ca-
pacitance is much bigger than the capacitances within the network.

Adding Custom Variables

Custom variables, such as gate resistance or stray inductance, that you wish to
use in the definition of device losses may be defined on the Variables tab.

Use the Add , Remove , Up and Down buttons on the left to add or
remove custom variables or to reorder them. Note that the first three lines in
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the list are reserved for the intrinsic variables and may not be removed or re-
ordered.

A custom variable is defined by a Prompt, which should provide a brief de-
scription of the purpose of the variable, and a Variable, which must be a
unique identifier. This identifier may then be used in the formula expressions
that define the device losses. You may specify a Default value that is used if
the end user of the thermal description does not provide a value.

In the Min and Max columns you may enter minimum and maximum allowed
values for both intrinsic and custom variables. During a simulation, PLECS
will monitor the actual values of the variables and raise a diagnostic message
if a variable value exceeds a specified limit. The default action is to show an er-
ror and stop the simulation but this may be changed in the simulation parame-
ters dialog using the diagnostic parameter Loss variable limit exceeded (see
“PLECS Blockset Parameters” on page 111 and “PLECS Standalone Parame-
ters” on page 111).

Specifying custom variable values

When you select a thermal description with custom variables on the Thermal
tab of a semiconductor parameter dialog, the dialog will show additional pa-
rameter fields for the custom variables using the prompts mentioned above. An
example dialog is shown below.
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Instead of static values that remain constant during a simulation you may also
specify the label of a Signal Goto block (see page 670) for a custom variable.
The label is a string consisting of a prefix for the scope (g: for global, s: for
schematic and m: for masked subsystem) and the tag name of the Goto block.
For example, if your model contains a Goto block with global scope and the tag
name Rg, you would enter ’g:Rg’ (including the quotation marks) in order to
reference this signal in a custom variable of a thermal description. This can be
used e.g. to simulate the effect of a gate drive that can dynamically change the
effective gate resistance.

Adding Custom Lookup Tables

Custom lookup tables are defined on the Custom tables tab. To add a new ta-
ble, click on New... and specify a unique name and the number of dimensions of
the new table. Use the Duplicate..., Rename... and Remove buttons to dupli-
cate, rename or remove an existing custom table.

Custom tables can be used in function expressions for device losses using the
lookup function, which is called with a string specifying custom table name and
one to three numeric arguments depending on the number of dimensions of the
table.

For example, consider that you have defined a custom variable Rg for the gate
resistance and a custom table Gate Resistance Eon Scaler that describes
how the turn-on losses scale in terms of the gate resistance. You could then use
the Lookup table and formula method on the Turn-on loss tab, specify the
nominal losses in the turn-on-loss lookup table and enter the following function
expression:

E*lookup('Gate Resistance Eon Scaler', Rg)

Editing Lookup Tables

When editing an intrinsic lookup table on one of the three loss tabs or a cus-
tom lookup table, you can add and remove new interpolation points for a table
dimension with the Edit menu or the context menu in the table. To enter mul-
tiple values at once, separate them by semicolons or spaces.

To rotate and tilt a three-dimensional table view, click on an empty space with
the left mouse button and drag the mouse while keeping the mouse button
pressed.
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Lookup method

When calculating function values from a lookup table, PLECS uses linear in-
terpolation if an input value lies within the index range for the corresponding
table dimension. If the input value lies outside the index range, PLECS will ex-
trapolate using the first or last pair of index values.

Copy, Paste and Scaling

Thermal data can be copied and pasted within the tables of the thermal editor,
and to or from other programs, like e.g. Microsoft Excel. This can be done using
the context menu or by pressing Ctrl-C/Ctrl-V (or cmd-C/cmd-V on macOS).
To specify the target location for the data, you have to select a part of the table
that has the same number of rows and columns as the copied data. When copy-
ing from another program, only the first correctly formatted number in each ta-
ble cell will be copied, any additional information (e.g. units) will be discarded.

Values selected in a table can be scaled by a given factor by right-clicking and
choosing Scale selected values. . . from the context menu. To convert a value
from 0.23 J to 0.23mJ, e.g., you can scale it with a factor of 0.001. To only change
the unit but not the actual value, i.e. to change 0.23 J to 230 J, use the Energy
scale drop box at the top right.
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Thermal Package Description

A thermal package description is used to describe the thermal behavior of a
power module that consists of multiple semiconductor chips. It contains the loss
descriptions of the individual semiconductors as well as a structural model of
the thermal coupling between the semiconductors and the package case.

The concept is illustrated using the example of a T-type inverter module shown
in the schematic below.

Thermal	Package
Impedance

IGBT_HILO-1

IGBT_HILO-4

IGBT_MID-3

D_HILO-1

D_HILO-4
D_MID-3

IGBT_MID-2

D_MID-2

The module contains two different types of IGBTs and two different types of
diodes because the high-side and low-side semiconductors (1 and 4) need to
block higher voltages than the mid-point semiconductors (2 and 3). The pack-
age description therefore needs to contain four semiconductor device descrip-
tions and a thermal model for the coupling between eight semiconductors and
the module case.

When you edit a thermal package description, the editor shows the following
tabs:

Device Types On this tab you define the different semiconductor types that
the package contains. The left hand side shows the list of device types, the
right hand side shows tabs to define the switching and conduction losses and
the thermal impedances of the individual device types. Each device type has a
name filter that is used to associate the thermal description for this device type
with the individual components in the module.

150



Thermal Editor

For the example module, the thermal package description would contain
four device types with name filters IGBT_HILO-*, IGBT_MID-*, D_HILO-* and
D_MID-* as shown in the screenshot below.

Thermal Impedance On this tab you define the thermal impedance between
the individual semiconductor devices and the case of the package. This defini-
tion considers devices to be heat sources, the case to be a temperature source
and the impedance to be an LTI system with or without internal states.

The heating of an IGBT or diode device inside the T-type inverter module not
only increases the temperature directly at the heat source device but also
causes the temperature of all other devices to rise. A straightforward way to de-
scribe such thermal coupling effects is to model the temperature rise of one de-
vice by summing the individual contributions to that temperature rise from all
the heat sources contained in the package. For the eight devices of the T-type
inverter module such a thermal linear superposition model can be formulated in
matrix notation as

∆TIGBT_HILO-1

∆TD_HILO-1
...

∆TD_HILO-4

 =


Z1,1 Z1,2 · · · Z1,8

Z2,1 Z2,2 · · · Z2,8

...
...

. . .
...

Z8,1 Z8,2 · · · Z8,8

 ·


QIGBT_HILO-1

QD_HILO-1
...

QD_HILO-4


A single component of the impedance matrix describes a thermal impedance
that relates a heating power to a temperature difference. For example, heating
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up the second device with the heating power QD_HILO-1 contributes also to in-
creasing the temperature difference ∆TIGBT_HILO-1 = TIGBT_HILO-1 − Tcase of the
first device, which is captured in the transient thermal impedance Z1,2(t). In
PLECS, Z1,2(t) is described by a Foster or Cauer thermal chain that can be de-
fined by clicking on a matrix element and setting type, number of elements and
chain parameters as exemplified below.

From the provided impedance matrix, PLECS will then transform all thermal
chains to the Cauer type and generate the matrices of a state-space model

ẋ = Ax+Bu

y = Cx+Du

where u is a vector comprising the device heat sources and case temperature
source(s), y is a vector of the same length comprising the device temperatures
and the heat flow out of the case and x is the vector of internal states.

The corresponding numerical representation of the state-space model can be
displayed by clicking on the Edit State-Space Matrices. . . button at the bot-
tom right. In the window shown below, it is then possible not only to view the
generated state-space matrices, but also to make changes to them that go be-
yond the linear superposition model. On the left-hand side you specify the num-
ber of internal states, the number of devices in the package, the width of the
case connection and the device names which must match the names of the ac-
tual devices in the module subsystem. On the right-hand side you enter the
numerical values of the state-space matrices. Note that direct changes made
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to the state-space matrices are not converted back to the thermal impedance
matrix when you return to the linear superposition model by clicking the Edit
Impedance Matrix. . . button at the bottom right.

Constants, Variables, Custom tables, Comment Constants, variables and
custom tables are shared by all device types in a package description. Please
see section “Thermal Description for a Single Device” (on page 143) for a de-
scription of these tabs.

Using a Thermal Package Description

A thermal package description is typically used in conjunction with a masked
subsystem that defines the electrical behavior of the module. The subsystem
mask defines a Thermal parameter with a Device type filter that matches
the type of the thermal package description (see also “Mask Dialog” on page
76).

The mask variable that is associated with this thermal parameter (here:
thermal) is then referenced as is in the Thermal description parameters of
the individual semiconductor devices in the subsystem. The component names
(e.g. IGBT_HILO-1 or IGBT_HILO-4) are matched against the name filters (e.g.
IGBT_HILO-*) to extract the appropriate loss definitions and thermal impedance
for the semiconductor device.

The thermal impedance between the devices and the module case is modeled by
the Thermal Package Impedance component (see page 733) that is placed on top
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of the semiconductor devices similar to a heat sink. This component also has
a parameter Thermal description that expects the thermal mask variable
thermal to extract the definition of the thermal network from it.

This is illustrated in the following figure.
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Importing Data from Graphical Datasheets

PLECS provides an Import Wizard that facilitates the import of data from
graphs that are typically used on real datasheets. The wizard is opened by
clicking on the magic wand icon ( ) that appears in the top right corner of any
page that allows you to enter tabular data, i.e. the loss and custom tables and
the thermal impedance.

When you open the import wizard for the first time on a particular page, you
are requested to provide a graph image. To import an image, drag a image file
to the empty wizard area or click on the appropriate underlined text to open a
file browser that lets you choose an image file. Image files must have a bitmap
file format (PNG, GIF, BMP, JPG or XPM). To import graphs from a PDF file,
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take a snapshot of the desired graph, then select Paste from the Edit menu
of the editor window or press Ctrl-V (cmd-V on macOS) to paste the snapshot
into the wizard.

After the image has been imported, a green coordinate system is drawn on top
of it. Your first task should be to align the green axes with the coordinate sys-
tem in the image. You can move an axis or change its length by dragging the
axis itself or its end point with the mouse.

Ensure that the axes have the proper dimensions. For turn-on and turn-off
losses, the x-axis is expected to be in amperes (A) and the y-axis, in joules (J);
for conduction losses, the x-axis is expected to be in amperes (A) and the y-axis,
in volts (V). If the dimensions in the image are swapped, you can flip the image
by clicking on the Mirror axes button in the image configuration dialog (see
below).

Configuring the Graph Import

After you have aligned the green coordinate system, you need to enter the axis
limits into the configuration dialog that has opened automatically when the im-
age was imported. If you have closed the dialog, you can open it again by click-
ing on the button in the wizard toolbar or on one of the green axis limit la-
bels.

In addition to the minimum and maximum settings, the x-axis has a Snap
property that is initialized automatically from the axis limits. You can override
the snap value by entering a number here; entering 0 disables snapping. To re-
store the automatically calculated value, click on the button.

Both the x-axis and y-axis have a Scale property that lets you choose between a
linear and logarithmic scale. By default, double-logarithmic scaling is used for
thermal impedances only; for all other imports the scaling defaults to linear.

The Opacity slider lets you change the opacity of the graph image from fully
transparent (or invisible) to fully opaque. The Mirror axes button will mirror
the graph image diagonally so that the two axes are exchanged. This is useful
e.g. when importing conduction losses where the graph typically shows Volts on
the x-axis and Amperes on the y-axis.

Adding and Moving Points

Points are added by double-clicking anywhere in the coordinate system. If snap-
ping is enabled, the x-value is adjusted to the nearest snap value. To move
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points, drag them with the left mouse button. If snapping is enabled, you can
temporarily disable it by pressing and holding the Shift key when you click on
a point.
To add new curves (e.g. for another temperature value) use the corresponding
entry from the Edit menu or from the context menu of the table at the bottom
of the editor. If there is more than one curve, a double-click will add new points
to all curves: The point at the mouse location is added to the current curve, i.e.
the curve that you added or interacted with most recently. For all other curves,
points are added based on their neighboring points’ coordinates.
Also, if there is more than one curve, the movement of points is restricted to
the y-direction. The reason for this is that all curves in the look-up table share
the same x-values, so changing the x-value of a point in one curve will affect all
other curves as well. You can temporarily override this restriction by pressing
and holding the Shift key when you click on a point.

Zooming and Panning

You can zoom into the graph for more precise placement of points and axes.
Zooming is controlled via the View menu and the corresponding buttons in the
toolbar. You can also zoom in and out by holding the Ctrl key (Cmd key on ma-
cOS) while rolling the mouse wheel. When you have zoomed into the graph, you
can pan the image using the sliders or by holding the Ctrl or Cmd key while
pressing and dragging the left mouse button. Pressing the spacebar will zoom
the graph to fit the window.

Adding and Managing Graph Images

Sometimes, the curves for one look-up table come from different graphs. To add
a new graph image to the wizard, click the button in the toolbar. To change
the visibility of a particular curve on the current graph, use the check box in
the corresponding row header in the table at the bottom. Press the button
in the toolbar to rename the current graph; graph names are used purely for
documentation purposes. To remove a graph (but not the curves), press the
button.

Fitting Thermal Impedances

When a vendor datasheet provides the thermal impedance as a heating curve
rather than Foster or Cauer network coefficients, you can use the import wizard
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to fit Foster coefficients to a given heating curve. First, import the graph of the
heating curve as described above and place a number of points on the heating
curve, then choose the desired number of Foster elements. As a general rule,
you must place at least two points per Foster element. As soon as these require-
ments are met, PLECS will calculate a set of Foster coefficients and display the
result as an orange curve on top of the graph.

PLECS uses a non-deterministic optimization algorithm to minimize the error
between the calculated curve and the points that you have placed. This algo-
rithm may not converge at all or converge at a local instead of the global mini-
mum. If the current fit is not satisfactory, you can calculate a new one by press-
ing the Recalculate button. Once the results are acceptable, press the Accept
button to close the wizard and transfer the calculated Foster values.
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Note The fitting algorithm can handle only single pulse curves. Vendor
datasheets sometimes also show heating curves for repeated pulses with dif-
ferent duty cycles; these curves cannot be used to calculate Foster coefficients
with PLECS.

If the fitting algorithm repeatedly does not find a satisfactory solution, you may
need to increase the number of Foster elements. Typically, three to five Foster
elements should yield good results.
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4 Thermal Modeling

Semiconductor Loss Specification

Care must be taken to ensure the polarity of the currents and voltages are cor-
rect when specifying conduction and switching loss data for semiconductor
switches and diodes. If one or both polarities are in the wrong direction, the
losses will be zero or incorrect. The voltage and current polarities of a single
semiconductor switch, diode and semiconductor switch with diode are defined in
PLECS as shown in the figure below.

Voltage and current polarity of single semiconductor switch, diode and semi-
conductor switch with diode

Single Semiconductor Switch Losses

The blocking voltage experienced by a single semiconductor switch is positive;
therefore, switching losses are defined in the positive voltage/positive current
region. Conduction losses are also defined in the positive voltage/positive cur-
rent region.

Diode Losses

The voltage and current waveforms during a typical diode switching cycle are
shown in the next figure. Turn on losses occur at t = t1 and turn off losses at
t = t2. The switching energy loss in both cases is calculated by PLECS using
the negative blocking voltage and positive conducting current at the switching
instant. These values are shown in the figure as dots. Therefore, the lookup ta-
bles for the turn-on and turn-off switching losses must be specified in the nega-
tive voltage/positive current region.

Conduction losses occur when t1 < t < t2. During this time period, the cur-
rent and voltage are both positive. Therefore the conduction loss profile must be
specified in the positive voltage/positive current region.
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Semiconductor Loss Specification

I
diode

V
diode

t
1

t
2

t

Diode voltage and current during switching

Losses of Semiconductor Switch with Diode

Semiconductor switches with an integrated diode such as the IGBT with Diode
model allow losses for both the semiconductor switch and diode to be individ-
ually specified using a single set of lookup tables. The conduction and switch-
ing loss tables for the semiconductor switch are specified for the same volt-
age/current regions as for the single semiconductor switch without diode. Due
to the polarity reversal of the diode, the diode losses are appended to the loss
tables of the semiconductor switch by extending the tables in the negative volt-
age/negative current direction for the diode conduction losses, and in the pos-
itive voltage/negative current direction for the diode switching losses. An ex-
ample turn-off loss table and conduction loss profile for a semiconductor switch
with diode are shown in the next two figures. A summary of the valid voltage
and current regions for defining conduction and switching losses for the differ-
ent types of semiconductors is given below:

Switch with Diode
Diode Switch

Switch Diode

V I V I V I V I

Conduction Loss + + + + + + - -

Switching Loss - + + + + + + -
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4 Thermal Modeling

Turn-off loss lookup table for semiconductor switch with diode

Conduction loss profile for semiconductor switch with diode
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5

Magnetic Modeling

Inductors and transformers are key components in modern power electronic cir-
cuits. Compared to other passive components they are rather difficult to model
for the following reasons:

• Magnetic components, especially transformers with multiple windings can
have complex geometric structures. The flux in the magnetic core may be
split into several paths with different magnetic properties. In addition to the
core flux, each winding has its own leakage flux.

• Core materials such as iron alloy and ferrite express a highly non-linear be-
havior. At high flux densities, the core material saturates leading to a greatly
reduced inductor impedance. Moreover, hysteresis effects and eddy currents
cause frequency-depending losses.

In PLECS, the user can build complex magnetic components in a special mag-
netic circuit domain. Primitives such as windings, cores and air gaps are pro-
vided in the Magnetics Library. The available core models include saturation
and hysteresis. Frequency dependent losses can be modeled with magnetic re-
sistances. Windings form the interface between the electrical and the magnetic
domain.

Alternatively, less complex magnetic components such as saturable inductors
and single-phase transformers can be modeled directly in the electrical domain.

Equivalent circuits for magnetic components

To model complex magnetic structures with equivalent circuits, three different
approaches exist: Coupled-inductors, the resistance-reluctance analogy and the
capacitance-permeance analogy.



5 Magnetic Modeling

Coupled inductors

In the coupled inductor approach, the magnetic component is modeled directly
in the electrical domain as an equivalent circuit, in which inductances repre-
sent magnetic flux paths and losses incur at resistors. Magnetic coupling be-
tween windings is realized either with mutual inductances or with ideal trans-
formers.
Using coupled inductors, magnetic components can be implemented in any cir-
cuit simulator since only electrical components are required. This approach
is most commonly used for representing standard magnetic components such
as transformers. The figure below shows an example for a two-winding trans-
former, where Lσ1 and Lσ2 represent the leakage inductances, Lm the non-
linear magnetizing inductance and Rfe the iron losses. The copper resistances
of the windings are modeled with R1 and R2.

Lσ1

Rfe

Lσ2 R2

Lm

R1

Ideal Transformer
N1:N2

Transformer implementation with coupled inductors

However, the equivalent circuit bears little resemblance to the physical struc-
ture of the magnetic component. For example, parallel flux paths in the mag-
netic structure are modeled with series inductances in the equivalent circuit.
For non-trivial magnetic components such as multiple-winding transformers or
integrated magnetic components, the equivalent circuit can be difficult to derive
and understand. In addition, equivalent circuits based on inductors are impos-
sible to derive for non-planar magnetic components.

Reluctance-resistance analogy

The traditional approach to model magnetic structures with equivalent elec-
trical circuits is the reluctance-resistance analogy. The magnetomotive force
(MMF) F is regarded as analogous to voltage and the magnetic flux Φ as analo-
gous to current. As a consequence, magnetic reluctance of the flux path R corre-
sponds to electrical resistance:
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Equivalent circuits for magnetic components

R =
F
Φ

The magnetic circuit is simple to derive from the core geometry: Each section of
the flux path is represented by a reluctance and each winding becomes an MMF
source.
To link the external electrical circuit with the magnetic circuit, a magnetic in-
terface is required. The magnetic interface represents a winding and estab-
lishes a relationship between flux and MMF in the magnetic circuit and voltage
v and current i at the electrical ports:

v = N
dΦ

dt

i =
F

N

where N is the number of turns. If the magnetic interface is implemented with
an integrator, it can be solved by an ODE solver for ordinary differential equa-
tions:

Φ =
1

N

ˆ
v dt

The schematic below outlines a possible implementation of the magnetic inter-
face in PLECS.

Ф

K

K: 1/N

L: N

V F

A

i

Vve+

e-

m+

m-

Electrical Magnetic

Implementation of magnetic interface

Although the reluctance-resistance duality may appear natural and is widely
accepted, it is an awkward choice for multiple reasons:
• Physically, energy is stored in the magnetic field of a volume unit. In a mag-

netic circuit model with lumped elements, the reluctances should therefore
be storage components. However, with the traditional choice of mmf and
flux as magnetic system variables, reluctances are modeled as resistors, i.e.
components that would usually dissipate energy. It is also confusing that the
magnetic interface is a storage component.
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5 Magnetic Modeling

• To model energy dissipation in the core material, inductors must be em-
ployed in the magnetic circuit, which is even less intuitive.

• Magnetic circuits with non-linear reluctances generate differential-algebraic
equations (DAE) resp. algebraic loops that cannot be solved with the ODE
solvers offered in PLECS.

• The use of magnetic interfaces results in very stiff system equations for
closely coupled windings.

Permeance-capacitance analogy

To avoid the drawbacks of the reluctance-resistance analogy the alternative
permeance-capacitance analogy is most appropriate. Here, the MMF F is again
the across-quantity (analogous to voltage), while the rate-of-change of magnetic
flux Φ̇ is the through-quantity (analogous to current). With this choice of sys-
tem variables, magnetic permeance P corresponds to capacitance:

Φ̇ = P dF

dt

Hence it is convenient to use permeance P instead of the reciprocal reluctance
R to model flux path elements. Because permeance is modeled with storage
components, the energy relationship between the actual and equivalent mag-
netic circuit is preserved. The permeance value of a volume element is given by:

P =
1

R
=

µ0µrA

l

where µ0 = 4π × 10−7 N/A2 is the magnetic constant, µr is the relative perme-
ability of the material, A is the cross-sectional area and l the length of the flux
path.

Magnetic resistors (analogous to electrical resistors) can be used in the mag-
netic circuit to model losses. They can be connected in series or in parallel to a
permeance component, depending on the nature of the specific loss. The energy
relationship is maintained as the power

Ploss = F Φ̇

converted into heat in a magnetic resistor corresponds to the power loss in the
electrical circuit.

Windings form the interface between the electrical and the magnetic domain.
A winding of N turns is described with the equations below. The left-hand side
of the equations refers to the electrical domain, the right-hand side to the mag-
netic domain.
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Magnetic Circuit Domain in PLECS

v = N Φ̇

i =
F

N

Because a winding converts through-quantities (Φ̇ resp. i) in one domain into
across-quantities (v resp. F ) in the other domain, it can be implemented with
a gyrator, in which N is the gyrator resistance R. The figure below shows the
symbol for a gyrator and a possible implementation in PLECS.

A

A

R

R

Gyrator symbol and implementation

In principle, the gyrator component could be used with regular capacitors to
build magnetic circuits. However, neither the gyrator symbol nor the capacitor
adequately resemble a winding respectively a flux path. Moreover, any direct
connection between the electrical and magnetic domain made by mistake would
lead to non-causal systems that are very difficult to debug. Therefore, dedicated
magnetic components should be used when modeling magnetic circuits.

Magnetic Circuit Domain in PLECS

The magnetic domain provided in PLECS is based on the permeance-
capacitance analogy. The magnetic library comprises windings, constant and
variable permeances as well as magnetic resistors. By connecting them accord-
ing to the physical structure the user can create equivalent circuits for arbi-
trary magnetic components. The two-winding transformer from above will look
like the schematic below when modeled in the magnetic domain.

Pσ1 and Pσ2 represent the permeances of the leakage flux path, Pm the non-
linear permeance of the core, and Gfe dissipates the iron losses. The winding
resistances R1 and R2 are modeled in the electrical domain.
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5 Magnetic Modeling

R2R1

N1 N2

GfePm

Pσ1 Pσ2

Transformer implementation in the magnetic domain

Modeling Non-Linear Magnetic Material

Non-linear magnetic material properties such as saturation and hysteresis can
be modeled using the variable permeance component. The permeance is deter-
mined by the signal fed into the input of the component. The flux-rate through
a variable permeance P(t) is governed by the equation:

Φ̇ =
d

dt
(P · F ) = P · dF

dt
+

d

dt
P · F

Since F is the state variable the equation must be solved for dF
dt . Therefore, the

control signal must provide the values of both P(t) and d
dtP(t).

The control signals must also provide the flux Φ(t) through the permeance.
This enables the solver to enforce Kirchhoff ’s current law for all branches k of
a node:

n∑
k=1

Φk = 0

When specifying the characteristic of a non-linear permeance, we need to dis-
tinguish carefully between the total permeance Ptot(F ) = Φ/F and the differen-
tial permeance Pdiff(F ) = dΦ/dF .

If the total permeance Ptot(F ) is known, the flux-rate Φ̇ through a time-varying
permeance is calculated as:
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Magnetic Circuit Domain in PLECS

Φ̇ =
dΦ

dt

=
d

dt
(Ptot · F )

= Ptot ·
dF

dt
+

dPtot

dt
· F

= Ptot ·
dF

dt
+

dPtot

dF
· dF
dt

· F

=

(
Ptot +

dPtot

dF
· F

)
· dF
dt

In this case, the control signal for the variable permeance component is:
P(t)

d
dtP(t)

Φ(t)

 =


Ptot +

d
dF Ptot · F

0

Ptot · F


In most cases, however, the differential permeance Pdiff(F ) is provided to char-
acterize magnetic saturation and hysteresis. With

Φ̇ =
dΦ

dt

=
dΦ

dF
· dF
dt

= Pdiff · dF
dt

,

the control signal is
P(t)

d
dtP(t)

Φ(t)

 =


Pdiff

0

Ptot · F



Saturation Curves for Soft-Magnetic Material

Curve fitting techniques can be employed to model the properties of ferromag-
netic material. As an example, a saturation curve adapted from the modified
Langevian equation for bulk magnetization without interdomain coupling is
used, which is referred to as the coth function:
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5 Magnetic Modeling

B = Bsat

(
coth

3H

a
− a

3H

)
+ µsatH

The coth function has three degrees of freedom which are set by the coefficients
Bsat, a and µsat. These coefficients can by found e.g. using a least-squares fitting
procedure. Calculating the derivate of B with respect to H yields

dB

dH
= Bsat

(
tanh2 (H/a)− 1

a tanh2 (H/a)
− a

H2

)
+ µsat

With the relationships Φ = B · A and F = H · l the control signal Pdiff for the
variable permeance is easily derived from the equation above.
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6

Mechanical Modeling

One-dimensional mechanics describe the mechanical interaction between bod-
ies that have exactly one degree of freedom. A translational body (or Mass) can
move along a single axis, and a rotational body (or Inertia) can rotate around
a single axis. With this limitation one-dimensional mechanical systems can be
modeled similarly to electrical systems using simple analogies that are listed in
the following table.

Electrical and Mechanical Analogies

Electrical Translational Rotational

Voltage Speed Angular speed

Current Force Torque

Capacitor Body (mass) Body (moment of inertia)

Inductor Spring Spring

Resistor Damper Damper

Transformer Lever Gear

Switch Clutch Clutch
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Flanges and Connections

The two mechanical subdomains use separate connectors: a translational
flange and a rotational flange . You can draw connections between flanges of
the same type. By creating branch connections you can connect more than two
flanges. Flanges that are connected to each other have the same displacement
(i.e. position or angle), and the connection will exert whatever force is necessary
in order to maintain this relationship.

Body components (i.e. the translational Mass and the rotational Inertia) have
two rigidly connected flanges so that the two systems shown below are equiva-
lent:

Equivalent connections of three translational bodies

Force/Torque Flows and Sign Conventions

As the above table of electrical and mechanical analogies suggests, forces or
torques acting on components are modeled as flows from one flange to another.
The direction of a positive flow is indicated either with a dot next to a flange or
with an arrow in the component icon.

Force and torque flows must be balanced, i.e. the sum of all flows towards
a component must generally be zero, but there are two exceptions to this
rule:

• Reference components only have a single flange so balancing is not possible
for a single instance. Reference components in fact represent connectors of
a single, global reference frame, and it is the net flow towards this reference
frame that must be zero.

• Body components have an implicit internal connection to the global reference
frame. A positive net flow towards a body causes the body to accelerate in the
positive direction.

172



Positions and Angles

In this context it is important to note that the positive direction does not neces-
sarily correlate with the graphical orientation of the components. For instance,
the schematic shown below models the equation

F1 + F2 = m · a

i.e. both forces accelerate the body in the positive direction, even though in the
schematic the two forces might appear to oppose each other.

Mass and two forces

Positions and Angles

In contrast to other modeling environments, PLECS does not generally use
flange displacements as state variables in the component equations in order to
avoid having to solve Index-2 problems. Instead, absolute or relative displace-
ments are only calculated when required e.g. in a hard-stop component or if you
explicitly measure them using a sensor. The displacements are then calculated
by integrating the corresponding absolute or relative speed.

Initial Conditions

As with all integrators, displacement meters must be provided with proper
initial values. PLECS allows you to specify these initial values directly in the
components that require them or indirectly via neighboring components. For
this purpose, most components have an initial displacement parameter that de-
faults to an empty string, which means ”don’t care” or ”don’t know”.

At simulation start, PLECS will automatically calculate required but unknown
initial values from the values that you have provided. An error will be flagged
if you do not supply enough data to determine required initial values. On the
other hand, an error will also be flagged, if you provide too much and inconsis-
tent data.

The example shown below models a body with mass m that is subject to a grav-
itational force m · g and suspended from a spring. The spring is initially un-
stretched (dx0 = 0) but its equilibrium displacement x0 is not specified.
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6 Mechanical Modeling

Spring and mass

If the model is run as is, PLECS will flag an error because it does not have
enough data to calculate this equilibrium length and the initial value of the
position sensor. To fix this, you can specify any one of the following three pa-
rameters:

1 the initial value x0 of the position sensor

2 the initial position x0 of the body

3 the equilibrium displacement x0 of the spring

Note that you may specify more than one of the above values, but if you do so,
the settings must be consistent.

Angle Wrapping

When calculating angles by integrating angular speed, care must be taken to
avoid numerical problems during longer simulations. For this reason, PLECS
automatically wraps the integral in the interval between −π and +π when you
measure an absolute angle with a position sensor that has one flange internally
connected to the rotational reference frame. Note that relative angles – mea-
sured with a position sensor that has two accessible flanges – are not wrapped
because you can wind a torsion spring by more than one turn.

Ideal Clutches

Analogous to its ideal electrical switches, PLECS features ideal mechanical
clutches that engage and disengage instantaneously. While engaged they make
an ideal rigid connection between their flanges and while disengaged they
transmit zero force (or torque).
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Ideal Clutches

Inelastic Collisions

PLECS permits you to connect an ideal clutch between two bodies and engage
the clutch while they move (or rotate) at different speeds. PLECS models such
an event as a perfectly inelastic collision and calculates the common speed after
the collision based on the conservation law of angular momentum so that e.g.

ω+ =
J1ω

−
1 + J2ω

−
2

J1 + J2

where J1 and J2 are the moments of inertia of the two bodies, ω−
1 and ω−

2 are
the two angular speeds prior to the collision and ω+ is the common angular
speed after the collision.

It is important to note that kinetic energy is lost during an inelastic colli-
sion even though the clutch is ideal and lossless. Assuming for simplicity that
J1 = J2 = J so that ω+ = 1

2 (ω
−
1 + ω−

2 ), the kinetic energy of the system before
and after the collision is for example

E− =
1

2
J
(
ω−
1

2
+ ω−

2

2
)

E+ =
1

2
(2J) ω+2

=
1

4
J
(
ω−
1 + ω−

2

)2
⇒ E− − E+ =

1

4
J
(
ω−
1 − ω−

2

)2

This is demonstrated using the simple example shown below consisting of two
bodies with the same inertia J = 1kg·m2

rad2 . One initially rotates with ω−
1 = 1 rad

s

while the other is stationary ω−
2 = 0. There is no friction or external torque

acting on the bodies. When the clutch engages at t = 1 s, the two bodies immedi-
ately rotate with the same speed ω+ = .5 rad

s and the total kinetic energy of the
system reduces instantaneously from .5 J to .25 J.

It is interesting to compare this response with that of a more detailed model,
in which the clutch is modeled with a finite damping coefficient when en-
gaged. Additionally the two shafts connecting the bodies with the clutch are
assumed to have a certain elasticity and damping coefficient. The correspond-
ing schematic and plots are shown below; for comparison the response from the
idealized model is superimposed with dashed lines.
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Inelastic collision with ideal clutch

The damping coefficients and spring constants have been exaggerated so that
there is visible swinging. Note however, that after the transients have settled,
the two bodies rotate at the same common speed as in the idealized model.
Likewise, the final mechanical energy stored in the system is the same as in
the idealized model.
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Inelastic collision with non-ideal clutch and elastic shafts
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7

Analysis Tools

Steady-State Analysis

Many specifications of a power electronic system are often given in terms of
steady-state characteristics. A straight-forward way to obtain the steady-state
operating point of a system is to simulate over a sufficiently long time-span un-
til all transients have faded out. The drawback of this brute-force approach is
that it can be very time consuming. Usually a system has time constants that
are much longer than the switching period. This applies in particular to electro-
thermal models.

Algorithm

The steady-state analysis of a periodic system is based on a quasi-Newton
method with Broyden’s update. In this approach the problem is formulated as
finding the roots of the function

f(x) = x− FT (x)

where x is an initial vector of state variables and FT (x) is the final vector of
state variables one period T later.

Evaluating f(x) or FT (x) therefore involves running a simulation from tstart to
tstart + T . The period, T , must be the least common multiple of the periods of all
sources (signal or electrical) in the model.

The above problem can be solved iteratively using

xk+1 = xk − J−1
k · f(xk) , Jk =

∂f(x)

∂x

∣∣∣∣
xk

The Jacobian J is calculated numerically using finite differences. If n is the
number of state variables, calculating the Jacobian requires n + 1 simulation
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runs where each state variable in turn is slightly perturbed and the difference
between the perturbed and unperturbed solution is computed to obtain one col-
umn of J:

ji =
f(x+∆xi)− f(x)

|∆xi|
, i = 1 . . . n

Because this is computationally expensive, only the first Jacobian is actually
computed this way. In subsequent iterations, the Jacobian is updated using
Broyden’s method, which does not require any additional simulations.

The convergence criterion of the iterations is based on the requirement that
both the maximum relative error in the state variables and the maximum rel-
ative change from one iteration to the next are smaller than a certain limit rtol:∣∣∣∣xk+1 − xk

xk

∣∣∣∣ < rtol and
|fi(x)|

max |xi(τ)|
< rtol for all i = 1, . . . , n

A steady-state analysis comprises the following steps:

1 Simulate until the final switch positions after one cycle are equal to the ini-
tial switch positions. This is called a circular topology.

2 Calculate the Jacobian matrix J0 for the initial state.

3 Iterate until the convergence criterion is satisfied. If during the iterations
the final switch positions after one cycle differ from the initial switch posi-
tions, go back to step 1.

Fast Jacobian Calculation for Thermal States

To reduce the number of simulation runs and thus save computation time
PLECS can calculate the Jacobian matrix entries pertaining to thermal states
directly from the state-space matrices rather than using finite differences.

There is a certain error involved with this method since it neglects the feedback
from the thermal states to the electrical states (or Simulink states). While this
will not affect the accuracy of the final result of the steady-state analysis it may
slow down the convergence. Normally, however, the overall performance will be
much faster than calculating the full Jacobian matrix.

The calculation method is controlled by the parameter JacobianCalculation
(see below).
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Steady-State Analysis

Non-Periodic Case

If the operating point of the system is defined as non-periodic (DC), a variant
of the algorithm described above is performed. As in the periodic case, Newton
iterations are executed to find the steady-state. Here, the algorithm searches
for the roots of the function

f(x) = ẋ

i.e. the time derivative of the vector of state variables x. Since no simulation
has to be performed to compute f , the full Jacobian J is calculated in each itera-
tion. The convergence criterion remains the same as for the periodic case.

Limitations

Hidden state variables

In PLECS Blockset, the steady-state analysis depends on the fact that a model
can be completely initialized with the InitialState parameter of the sim com-
mand. However, certain Simulink blocks that clearly have an internal memory
do not store this memory in the state vector and therefore cannot be initialized.
Among these blocks are the Memory block, the Relay block, the Transport De-
lay block and the Variable Transport Delay block. If a model contains any block
with hidden states, the algorithm may be unable to find a solution.

State variable windup

If the effect of a state variable on the system is limited in some way but the
state variable itself is not limited, it might wind up towards infinity. In this
case the algorithm may fail to converge or return a false solution. In order to
avoid this problem you should limit the state variable itself, e.g. by enabling the
Limit output checkbox of an Integrator block.

Reference

D. Maksimović, "Automated steady-state analysis of switching power convert-
ers using a general-purpose simulation tool", Proc. IEEE Power Electron-
ics Specialists Conference, June 1997, pp. 1352-1358.
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AC Analysis

The AC Analysis uses the Steady-State Analysis to compute the transfer func-
tion of a periodic system at discrete analysis frequencies. For each frequency
the following steps are executed:

1 Apply a sinusoidal perturbation to the system under study.

2 Find the periodic steady-state operating point of the perturbed system.

3 Extract the system response at the perturbation frequency using Fourier
analysis.

The perturbation frequencies are defined by specifying the sweep range and the
number of points to be placed within this range on a linear or logarithmic scale.

Note The period length of the perturbed system is the least common multiple
of the unperturbed system period and the perturbation period. In order to keep
this number and thus the simulation time small the algorithm may slightly ad-
just the individual perturbation frequencies.

In PLECS Standalone, the operating point can be defined as “non-periodic”
(DC). In this case, no sweep is executed, but the Bode plot is computed directly
from the state space matrices at the steady-state.

Impulse Response Analysis

An alternative and faster method to determine the open loop transfer function
of a system is the Impulse Response Analysis. Instead of perturbing a system
with sinusoidal stimuli of different frequencies, one at a time, a single impulse
is applied when the system is in steady state. The system transfer function can
then be calculated very efficiently over a wide frequency range (from zero to
half the system frequency) by computing the Laplace transform of the transient
impulse response.

Algorithm

The impulse response analysis is performed in three steps:
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Impulse Response Analysis

1 Find the steady-state operating point of the system under study.

2 Apply a perturbation in form of a discrete impulse for the duration of one pe-
riod.

3 Calculate the Laplace transform of the transient impulse response.

Compensation for Discrete Pulse

Theoretically, in order to compute the system transfer function from the
Laplace transform of the system response, the system must be perturbed with a
unit Dirac impulse (also known as delta function). This is not practical for nu-
merical analysis, so the algorithm applies a finite rectangular pulse instead.
For transfer functions such as the line-to-output transfer function or the out-
put impedance this can be compensated for by dividing the Laplace transform
of the system response by the Laplace transform of the rectangular pulse. This
is achieved by setting the parameter Compensation for discrete pulse to
discrete pulse, which is the default.

However, when calculating control-to-output transfer functions that involve the
duty cycle of a switched converter, the rectangular input signal interferes with
the sampling of the modulator. In this case the compensation type should be set
to external reference. This causes the Impulse Response Analysis block to
have two input signals that should be connected as shown in this figure.
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Finally, you can set the compensation type to none which means that the com-
puted transfer function is taken as is. Use this setting if the modulator uses
regular sampling and the sampling period is identical to the system period.

Reference

D. Maksimović, "Automated small-signal analysis of switching power convert-
ers using a general-purpose time-domain simulator", Proc. Applied Power
Electronics Conference, February 1998.
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Multitone Analysis

The Multitone Analysis is similar to an AC Analysis. Again the response of the
system to a small perturbation signal is analysed. However, instead of multiple
sinusoidal signals of different frequencies, only one multitone signal is applied.
It is composed of several sinusoidal signals and therefore contains all investi-
gated frequencies at once.

The multitone signal is computed as

u(t) =

√
2

N

N∑
k=1

sin

(
2πkfbt+

π(k − 1)2

N

)
,

where N is the number of tones and fb the base frequency. In PLECS, the user
can control the amplitude of the perturbation signal by a factor that is multi-
plied to u(t).

Algorithm

The simulation is divided into two phases. It is assumed that the system
reaches its steady-state in the first phase of duration Ti. In the second phase
of duration Tb = 1/fb, the response of the system is recorded for the Fourier
analysis.

The Multitone Analysis performs these steps:

1 Perform an unperturbed simulation of length Ti + Tb. Record the system re-
sponse during Tb in y0.

2 Perform a simulation of the same length and perturbed by u. Record the sys-
tem response during Tb in y.

3 Compute the Fourier transforms U of u and Y of y − y0.

4 Compute the transfer function as G = Y/U .

Remarks

The Multitone Analysis is faster than the AC Analysis because it only needs to
compute the response to one signal instead of a set of signals for each frequency.
On the other hand, the analysed frequencies are restricted to multiples of the
base frequency. Since the Multitone Analysis does not use the Steady-State
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Analysis, it still works in cases where the Steady-State Analysis fails, provided
Ti is large enough.

Note that the lengths of the y0 and y vectors are different in general. To com-
pute the difference y − y0, the missing values are linearly interpolated.

References

S. Boyd, "Multitone signals with low crest factor", IEEE Transactions of Cir-
cuits and Systems, Vol. CAS-33, No. 10, 1986.

C. Fernández, P. Zumel, A. Fernández-Herrero, M. Sanz, A. Lázaro, A. Bar-
rado, "Frequency response of switching DC/DC converters from a single
simulation in the time domain", Applied Power Electronics Conference
and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE , March 2011.
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Usage in PLECS Standalone

In PLECS Standalone all analyses are managed in the Analysis Tools Dialog
shown below. To open the dialog, select Analysis tools... from the Simulation
menu of the schematic editor.

The left hand side of the dialog window shows a list of the analyses that are
currently configured for the model. To add a new analysis, click the button
marked + below the list and select the desired analysis type. To remove the
currently selected analysis, click on the button marked -. You can reorder the
analyses by clicking and dragging an entry up and down in the list.

The right hand side of the dialog window shows the parameter settings of the
currently selected analysis. Each analysis must have a unique Description.
The other parameters available for the different analysis types are described
further below.

The button Start analysis/Abort analysis starts the currently selected analy-
sis or aborts the analysis that is currently running. The button Show log/Hide
log shows or hides a log window that displays the progress of an analysis and
diagnostic messages.

Steady-State Analysis

Operating point
This parameter defines whether the operating point of the system is peri-
odic or non-periodic (DC). If it is periodic, the system period can be specified
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using the next parameter.

System period
The system period is the least common multiple of the periods of all sources
(signal or electrical) in the model, in seconds (s). If the parameter setting
does not reflect the true system period or an integer multiple thereof, the
analysis will yield meaningless results or fail to converge altogether. A set-
ting of 0 is equivalent to defining the system as non-periodic. When set to
auto, which is the default, PLECS will try to determine the system period
automatically.

Simulation start time
The start time tstart to be used in the transient simulation runs, in seconds
(s). Simulations run from tstart to tstart + T , where T is the system period
specified above. The default is 0.

Show final cycles / timespan
The number of steady-state cycles for which a transient simulation is run at
the end of an analysis. Or, if the simulation is non-periodic, the duration of
the final transient simulation. The default is 1.

Number of init. cycles
The number of cycle-by-cycle simulations to be performed before the Newton
iterations are started. When an analysis fails to converge because the start-
ing point was too far from the steady-state solution, this parameter can help
to get better starting conditions. The default is 0.

Termination tolerance
The relative error bound. The analysis continues until both the maximum
relative error in the state variables and the maximum relative change from
one iteration to the next are smaller than this bound for each state variable.

Max. number of iterations
Maximum number of Newton iterations allowed.

Rel. perturbation for Jacobian
Relative perturbation of the state variables used to calculate the approxi-
mate Jacobian matrix.

Jacobian calculation
Controls whether Jacobian matrix entries for thermal state variables are
calculated via finite differences (full) or directly from the state-space ma-
trices (fast). The default is fast.

Max. number of threads
Specifies the maximum number of parallel threads that may be used during
the analysis. When set to auto, the limit specified in the PLECS preferences
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is used.

AC Sweep

In order to perform an AC sweep, you need to insert a Small Signal Perturba-
tion (see page 681) and a Small Signal Response (see page 682) block in order
to define the points at which the perturbation is injected and the response is
measured. The Small Signal Gain (see page 680) block can be used to obtain the
closed loop gain of a feedback loop.

At the end of an analysis, a scope window will open and display the Bode dia-
gram of the transfer function. You can also open the scope manually by clicking
one Show results button.

Operating point
This parameter defines whether the operating point of the system is peri-
odic or non-periodic (DC). If it is periodic, the system period can be specified
using the next parameter.

System period
The system period is the least common multiple of the periods of all sources
(signal or electrical) in the model, in seconds (s). If the parameter setting
does not reflect the true system period or an integer multiple thereof, the
analysis will yield meaningless result or fail to converge altogether. A sys-
tem period of 0 is equivalent to defining the system as non-periodic. When
set to auto, which is the default, PLECS will try to determine the system
period automatically.

Frequency range
A vector containing the lowest and highest perturbation frequency, in hertz
(Hz).

Amplitude
A vector containing the amplitudes of the perturbation signal at the lowest
and highest frequency. The amplitudes at intermediate frequencies are in-
terpolated linearly. If a scalar is entered, the amplitude will be constant for
all frequencies.

Perturbation
The Small Signal Perturbation block that will be active during the analysis.
All other perturbations blocks will output 0.

Response
The Small Signal Response block that will record the system response dur-
ing the analysis.
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Simulation start time
The start time tstart to be used in the transient simulation runs, in seconds
(s). Simulations run from tstart to tstart + T , where T is the system period
specified above. The default is 0.

Frequency scale
Specifies whether the sweep frequencies should be distributed on a linear
or logarithmic scale.

Number of points
The number of automatically distributed frequencies.

Additional frequencies
A vector specifying frequencies to be swept in addition to the automatically
distributed frequencies, in hertz (Hz).

Max. number of threads
Specifies the maximum number of parallel threads that may be used during
the analysis. When set to auto, the limit specified in the PLECS preferences
is used.

For a description of the steady-state options please refer to “Steady-State Anal-
ysis” (on page 186).

Impulse Response Analysis

In order to perform an impulse response analysis, you need to insert a Small
Signal Perturbation (see page 681) and a Small Signal Response (see page 682)
block in order to define the points at which the perturbation is injected and the
response is measured.

At the end of an analysis, a scope window will open and display the Bode dia-
gram of the transfer function. You can also open the scope manually by clicking
one Show results button.

For a description of the parameters please refer to “AC Sweep” (on page 188).
In an impulse response analysis, the computational effort for an individual fre-
quency is very cheap. Therefore, the parameter Additional frequencies is
omitted; instead, the Number of points can be set to a large value in order ob-
tain smooth curves.
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Multitone Analysis

In order to perform a multitone analysis, you need to insert a Small Signal Per-
turbation (see page 681) and a Small Signal Response (see page 682) block in
order to define the points at which the perturbation is injected and the response
is measured.

At the end of an analysis, a scope window will open and display the Bode dia-
gram of the transfer function. You can also open the scope manually by clicking
one Show results button.

Initial simulation period
The duration of an initial simulation performed before the response is mea-
sured. It is assumed that during this period, the system reaches its steady
state. The total simulation duration will be the sum of this parameter and
one period of the base frequency signal.

Frequency range
A vector containing the lowest and highest frequency of the multitone per-
turbation signal, in hertz (Hz). The highest frequency is rounded up to-
wards the next integer multiple of the lowest frequency.

In a multitone analysis, the frequencies are linearly spaced (see “Multi-
tone Analysis” (on page 184)). Since the Bode plot has a logarithmic scale,
PLECS thins out the higher frequency values to accelerate the analysis.

If the lowest and highest frequencies are far apart, i.e. separated by several
orders of magnitude, the multitone analysis may become slow. One reason
is that the simulation times become long and the simulation steps small,
since they depend on the lowest and highest frequencies, respectively. You
may try to speed up the analysis by specifying intermediate frequency val-
ues, i.e. by entering a frequency vector with more than two elements. Each
intermediate value must be greater than ten times the preceding value. If
the frequency vector contains n elements, n− 1 separate multitone analyses
are performed and the Bode plot is composed of the respective results. Since
the frequency range of each individual multitone analysis is smaller than
the overall range, the total time needed may become shorter.

Amplitude
The amplitude of the perturbation signal. Note that the actual perturbation
signal may have a sightly different amplitude due to its composition from
the different tones.

Perturbation
The Small Signal Perturbation block that will be active during the analysis.
All other perturbations blocks will output 0.
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Response
The Small Signal Response block that will record the system response dur-
ing the analysis.

Simulation start time
The start time tstart to be used in the transient simulation runs, in seconds
(s). The default is 0.

Max. number of threads
Specifies the maximum number of parallel threads that may be used during
the analysis. When set to auto, the limit specified in the PLECS preferences
is used.

Extraction of State-Space Matrices

PLECS allows you to extract the state-space matrices describing the linear por-
tion of a circuit model for a given combination of switch positions. The com-
mands used for this purpose are listed below. These commands can be used
both in a Simulation Script (see page 253) and on the Octave console. In each
of the commands circuit is the name of the circuit model.

names = plecs('get', circuit, 'StateSpaceOrder');

returns a struct containing the names of the components associated with the
circuit model’s inputs, outputs, states and switches.

plecs('set', circuit, 'SwitchVector', switchpos);

sets the vector of switch positions for the subsequent analysis to switchpos.

t = plecs('get', circuit, 'Topology');

returns a struct with the state-space matrices A, B, C, D and I for the vector of
switch positions specified by the previous command. The matrix I is the iden-
tity matrix if all electrical states are independent. Otherwise it specifies the
relationship between the dependent variables.

The matrices obtained can be further used for state-space averaging (see page
207).

Above commands can also be invoked via the RPC interface (see page 262) us-
ing an analogous syntax.
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Application Example

The demo model “Buck Converter with Analysis Tools” implements the buck
converter shown below. It operates at a switching frequency of 100 kHz with a
fixed duty-cycle of 15/28. To run a transient simulation from zero initial condi-
tions, select Start from the Simulation menu.
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To view the analyses configured in this model select Analysis tools... from the
Simulation menu. The only periodic source in the model is the carrier signal
used in the modulator. Hence, the parameter System period for all analyses is
specified as T = 1/100 kHz = 10−5 s.

Steady-State Operation

To view the steady-state operation of the converter, select Steady-State Anal-
ysis from the list and click on Start analysis. After the analysis has found the
periodic operating point, the scope will show five steady-state cycles.

Control-to-Output Transfer Function

For the calculation of the control-to-output transfer function, a small pertur-
bation needs to be added to the modulation index. This is done with the Small
Signal Perturbation block m', which has the Show feed-through input set-
ting enabled. The system output in this case is defined as the output voltage of
the converter. The output signal of the voltmeter is therefore connected to the
Small Signal Response block vo'.

To calculate the transfer function using the AC Sweep, select Control to Out-
put TF (AC Sweep) from the list and click on Start analysis. The analysis
sweeps the frequency range between 100Hz and 50 kHz. 21 points are placed
logarithmically within this range; to obtain a smoother output, additional data
points are generated between 800 and 1400Hz.
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To calculate the transfer function using the Impulse Response Analysis, select
Control to Output TF (Impulse Response) from the list and click on Start
analysis.

Output Impedance

For the calculation of the output impedance, a small perturbation current is
injected into the converter output using a current source that is controlled
by the Small Signal Perturbation block i’ and the output voltage response
is measured. As above, two analyses have been configured that calculate the
impedance using the AC Sweep and the Impulse Response Analysis.

Loop Gain

The demo model “Buck Converter with Loop Gain Analysis” implements the
controlled buck converter shown below. A PID controller regulates the output
voltage to 15V.
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For the calculation of the voltage loop gain, the Small Signal Gain block Loop
Gain Meter has been inserted into the feedback path. If you look under the
mask of the Small Signal Gain, you can see how the block both injects a small
perturbation and measures the system response.

To calculate the loop gain, select Analysis tools... from the Simulation menu,
then choose Closed Loop Gain from the list of analyses and click Start anal-
ysis.
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Usage in PLECS Blockset

In PLECS Blockset, you configure analyses by copying the appropriate blocks
from the Analysis Tools library in PLECS Extras into your model.

Steady-State Analysis

To perform a steady-state analysis, copy the Steady-State Analysis block (see
page 851) into your model. An analysis can be run interactively from the block
dialog or via a MATLAB command. The calling syntax is

plsteadystate(block);

where block is the Simulink handle or the full block path of the Steady-State
Analysis block. The block handle or path can be followed by parameter/value
pairs. Otherwise, the settings specified in the block dialog are used.

The following table lists the parameters of the Steady-State Analysis block.
The Parameter column shows the parameter names to be used with the
plsteadystate command. The Description column indicates whether and
where you can set the value in the dialog box. Parameters that are not acces-
sible in the dialog box can be modified using the set_param command.

Steady-State Analysis Parameters

Parameter Description

TimeSpan For a fixed system period, the period length;
this is the least common multiple of the peri-
ods of independent sources in the system. For
a variable system period, the maximum time
span during which to look for a trigger event
marking the end of a period. Set by the System
period length/Max simulation time span
field.

TStart Simulation start time. Set by the Simulation
start time field.
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Steady-State Analysis Parameters (contd.)

Parameter Description

Tolerance Relative error tolerance used in the conver-
gence criterion. Set by the Termination toler-
ance field.

MaxIter Maximum number of iterations allowed. Set by
the Max number of iterations field.

Display Specifies the level of detail of the diagnostic
messages displayed in the command window
(iteration, final, off). Set by the Display
drop-down list.

HideScopes Hide all Simulink scope windows during an
analysis in order to save time.

HiddenStates Specifies how to handle Simulink blocks with
‘hidden’ states, i.e. states that are not stored in
the state vector (error, warning, none). Set by
the Hidden model states drop-down list.

FinalStateName Name of a MATLAB variable used to store the
steady-state vector at the end of an analysis.
Set by the Steady-state variable field.

NCycles Number of steady-state cycles that should be
simulated at the end of an analysis. Set by the
Show steady-state cycles field.

JPert Relative perturbation of the state variables
used to calculate the approximate Jacobian
matrix.

JacobianCalculation Controls the way the Jacobian matrix is calcu-
lated (full, fast). The default is fast.

NInitCycles Number of cycle-by-cycle simulations that
should be performed before the actual steady-
state analysis. This parameter can be used to
provide the algorithm with a better starting
point. The default is 0.
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These examples show how to run analyses for the block Steady State in the
model mymodel:

plsteadystate('mymodel/Steady State');

starts an analysis using the parameters specified in the dialog box.

plsteadystate('mymodel/Steady State','TStart',0,...
'FinalStateName','x0');

plsteadystate('mymodel/Steady State','TStart',1,...
'FinalStateName','x1');

performs two analyses with different start times and assigns the resulting
steady-state vectors to two different variables x0 and x1. This is useful e.g. if
the model has a reference signal with a step change and you want to determine
the steady state before and after the change.

AC Sweep / Loop Gain Analysis

To perform an AC sweep, copy the AC Sweep block (see page 840) into your
model. The block outputs a perturbation signal, which must be injected into the
system. The system response must be fed back into the block input.

To perform a loop gain analysis, copy the Loop Gain Analysis (AC Sweep) block
(see page 846) into your model and insert it into the path of a feedback loop.

An analysis can be run interactively from the block dialogs or via a MATLAB
command. The calling syntax is

placsweep(block);

where block is the Simulink handle or the full block path of the AC Sweep or
Loop Gain Analysis block. The block handle or path can be followed by parame-
ter/value pairs. Otherwise, the settings specified in the block dialog are used.

The following table lists the parameters of the AC Sweep and Loop Gain Anal-
ysis blocks. The Parameter column shows the parameter names to be used
with the placsweep command. The Description column indicates whether and
where you can set the value in the dialog box. Parameters that are not accessi-
ble in the dialog box can be modified using the set_param command.
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AC Analysis Parameters

Parameter Description

TimeSpan Period length of the unperturbed system. Set by the
System period length field.

TStart Simulation start time. Set by the Simulation
start time field.

FreqRange Range of the perturbation frequencies. Set by the
Frequency sweep range field.

FreqScale Specifies whether the sweep frequencies should be
distributed on a linear or logarithmic scale. Set
by the Frequency sweep scale field.

NPoints Number of data points generated. Set by the Num-
ber of points field.

InitialAmplitude Perturbation amplitude at the first perturbation
frequency. Set by the Amplitude at first freq
field.

Method Method used for obtaining the periodic steady-state
operating point of the perturbed system:
Brute force simulation - start from model
initial state, Brute force simulation - start
from unperturbed steady state, Steady-state
analysis - start from model initial state,
Steady-state analysis - start from unper-
turbed steady state.
Set by the Method drop-down list.

Tolerance Relative error tolerance used in the convergence
criterion. Set by the Termination tolerance field.

MaxIter Maximum number of iterations allowed. Set by the
Max number of iterations field.

Display Specifies the level of detail of the diagnostic mes-
sages displayed in the command window (itera-
tion, final, off). Set by the Display drop-down
list.
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AC Analysis Parameters (contd.)

Parameter Description

HideScopes Hide all Simulink scope windows during an analy-
sis in order to save time.

HiddenStates Specifies how to handle Simulink blocks with ’hid-
den’ states, i.e. states that are not stored in the
state vector (error, warning, none). Set by the
Hidden model states drop-down list.

OutputName Name of a MATLAB variable used to store the
transfer function at the end of an analysis. Set by
the Output variable field.

BodePlot Plot a Bode diagram of the transfer function at the
end of an analysis. Set by the Plot Bode diagram
drop-down list.

JPert Relative perturbation of the state variables used to
calculate the approximate Jacobian matrix.

NInitCycles If a steady-state analysis is used to obtain the
starting point of the ac analysis (see parameter
Method above), this parameter specifies the num-
ber of cycle-by-cycle simulations that should be
performed before the steady-state analysis. This
parameter can be used to provide the algorithm
with a better starting point. The default is 0.

These examples show how to run analyses for the block AC Sweep in the model
mymodel:

placsweep('mymodel/AC Sweep');

starts an analysis using the parameters specified in the dialog box.

placsweep('mymodel/AC Sweep','TStart',0,...
'OutputName','T0');

placsweep('mymodel/AC Sweep','TStart',1,...
'OutputName','T1');
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performs two analyses with different start times and assigns the resulting
transfer functions to two different variables T0 and T1. This is useful e.g. if the
model has a reference signal with a step change and you want to determine the
transfer function before and after the change.

Impulse Response Analysis

To perform an impulse response analysis, copy the Impulse Response Analysis
block (see page 844) into your model. The block outputs a perturbation signal,
which must be injected into the system. The system response must be fed back
into the block input.

An analysis can be run interactively from the block dialogs or via a MATLAB
command. The calling syntax is

plimpulseresponse(block);

where block is the Simulink handle or the full block path of the Impulse Re-
sponse Analysis block. The block handle or path can be followed by parame-
ter/value pairs. Otherwise, the settings specified in the block dialog are used.

The following table lists the parameters of the Impulse Response Analysis
block. The Parameter column shows the parameter names to be used with the
plimpulseresponse command. The Description column indicates whether and
where you can set the value in the dialog box. Parameters that are not accessi-
ble in the dialog box can be modified using the set_param command.

Impulse Response Analysis Parameters

Parameter Description

TimeSpan Period length of the unperturbed system. Set by the
System period length field.

TStart Simulation start time. Set by the Simulation start
time field.

FreqRange Range of the perturbation frequencies. Set by the Fre-
quency sweep range field.
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Impulse Response Analysis Parameters (contd.)

Parameter Description

FreqScale Specifies whether the sweep frequencies should be dis-
tributed on a linear or logarithmic scale. Set by the
Frequency sweep scale field.

NPoints Number of data points generated. Set by the Number
of points field.

Perturbation Perturbation amplitude of the discrete impulse. Set by
the Perturbation field.

Compensation Specifies whether and how the effect of the sampling
should be compensated (none, discrete pulse, ex-
ternal reference). Set by the Compensation for
discrete pulse drop-down list.

Tolerance Relative error tolerance used in the convergence cri-
terion of the initial steady-state analysis. Set by the
Termination tolerance field.

MaxIter Maximum number of iterations allowed during the ini-
tial steady-state analysis. Set by the Max number of
iterations field.

Display Specifies the level of detail of the diagnostic messages
displayed in the command window (iteration, final,
off). Set by the Display drop-down list.

HideScopes Hide all Simulink scope windows during an analysis in
order to save time.

HiddenStates Specifies how to handle Simulink blocks with ’hidden’
states, i.e. states that are not stored in the state vec-
tor (error, warning, none). Set by the Hidden model
states drop-down list.

OutputName Name of a MATLAB variable used to store the transfer
function at the end of an analysis. Set by the Output
variable field.
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Impulse Response Analysis Parameters (contd.)

Parameter Description

BodePlot Plot a Bode diagram of the transfer function at the
end of an analysis. Set by the Plot Bode diagram
drop-down list.

JPert Relative perturbation of the state variables used to
calculate the approximate Jacobian matrix.

NInitCycles Number of cycle-by-cycle simulations that should be
performed before the initial steady-state analysis. This
parameter can be used to provide the algorithm with a
better starting point. The default is 0.

Multitone / Loop Gain Analysis

To perform a multitone analysis, copy the Multitone Analysis block (see page
849) into your model. The block outputs a perturbation signal, which must be
injected into the system. The system response must be fed back into the block
input.

To perform a loop gain analysis, copy the Loop Gain Analysis (Multitone) block
(see page 847) into your model and insert it into the path of a feedback loop.

An analysis can be run interactively from the block dialogs or via a MATLAB
command. The calling syntax is

plmultitone(block);

where block is the Simulink handle or the full block path of the Multitone Anal-
ysis or Loop Gain Analysis block. The block handle or path can be followed by
parameter/value pairs. Otherwise, the settings specified in the block dialog are
used.

The following table lists the parameters of the Multitone Analysis and Loop
Gain Analysis blocks. The Parameter column shows the parameter names
to be used with the placsweep command. The Description column indicates
whether and where you can set the value in the dialog box. Parameters that are
not accessible in the dialog box can be modified using the set_param command.
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Multitone Analysis Parameters

Parameter Description

FreqRange Range of the perturbation frequencies. Set by the
Frequency sweep range field.

Amplitude Amplitude of the perturbation signal. Set by the
Amplitude field.

TStart Simulation start time. Set by the Simulation
start time field.

Display Specifies the level of detail of the diagnostic mes-
sages displayed in the command window (itera-
tion, final, off). Set by the Display drop-down
list.

HideScopes Hide all Simulink scope windows during an analy-
sis in order to save time.

OutputName Name of a MATLAB variable used to store the
transfer function at the end of an analysis. Set by
the Output variable field.

BodePlot Plot a Bode diagram of the transfer function at the
end of an analysis. Set by the Plot Bode diagram
drop-down list.

Extraction of State-Space Matrices

PLECS allows you to extract the state-space matrices describing the linear por-
tion of a circuit model for a given combination of switch positions. The com-
mands used for this purpose are listed below. In each of the commands circuit
is the full Simulink path of a PLECS Circuit block.

names = plecs('get', circuit, 'StateSpaceOrder');

returns a struct containing the names of the components associated with the
circuit model’s inputs, outputs, states and switches.

plecs('set', circuit, 'SwitchVector', switchpos);
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sets the vector of switch positions for the subsequent analysis to switchpos.

t = plecs('get', circuit, 'Topology');

returns a struct with the state-space matrices A, B, C, D and I for the vector of
switch positions specified by the previous command. The matrix I is the iden-
tity matrix if all electrical states are independent. Otherwise it specifies the
relationship between the dependent variables.

The matrices obtained can be further used for state-space averaging (see page
207).

Application Example

This section demonstrates the application of the analysis tools in PLECS Block-
set for the design of the regulated buck converter system operating at a switch-
ing frequency of 100 kHz shown in the figure below. The converter shall supply a
regulated 15V to a resistive load at a nominal load current of 5A.
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The examples used in this section follow the design example in [Erickson],
chapter 9. They have been implemented in the demo models called “Buck Con-
verter with Parameter Sweep” , “Buck Converter with Analysis Tools” and
“Buck Converter with Loop Gain Analysis” . These demo models can be found
in the Demo Models Browser of PLECS.

Steady-State Analysis

We first examine the open-loop behavior of the system. In order to get the de-
sired output voltage we need to apply a fixed duty-cycle of Vout/Vsrc = 15V/28V.
You can verify this by using the Steady-State Analysis block to obtain the
steady-state waveform of the output voltage.

For this purpose you copy the block into the model and double-click it to open
the dialog box. The parameter System period length is already set to the
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correct value, i.e. 1e-5. Set the parameter Show steady-state cycles to e.g.
10 so that you can more easily check that the system is indeed in the steady
state when the analysis finishes. Then click on Start analysis. The algorithm
should converge after the first iteration, and the scope should show the wave-
form in the figure below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

14.998

15

15.002
v lo

ad
 / 

V

t / s

Steady-state output voltage

AC Sweep

Open-loop control-to-output transfer function In order to determine the
control-to-output transfer function you need to perturb the steady-state duty-
cycle and measure the corresponding perturbation of the output voltage. This
is achieved by connecting an AC Sweep block as shown below. The block output
is the perturbation signal; it is added to the steady-state duty cycle. The block
input is connected to the load voltage signal.

The initial amplitude of the perturbation is set to 1e-3 which is approx. 2/1000
of the duty cycle. We want to sweep a frequency range between 100Hz and
50 kHz with a few extra points between 800Hz and 1200Hz. This is achieved by
setting the parameter to [100 800:50:1200 50000]. As expected, the resulting
bode plot of the transfer function shows a double pole at f0 = 1/(2π

√
LC) ≈

1 kHz and a dc gain of G0 = 28V ≈ 29 dB.

Open-loop output impedance Although not required for the compensator
design we will now calculate the output impedance for demonstration purposes.
To do so we need to inject a small ac current into the converter output and mea-
sure the resulting perturbation of the output voltage. We therefore connect
a controlled current source in parallel with the load resistor as shown below.
This current source is controlled by the perturbation signal of the AC Sweep
block. The block input is again connected to the load voltage signal. The aver-
age steady-state output current is 5A; we therefore set the initial perturbation
amplitude to 1e-2.
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Impulse Response Analysis

Alternatively you can determine the open-loop transfer functions using the Im-
pulse Response Analysis block as shown in the figure below. In this analysis
method the calculation of an individual output point is relatively inexpensive;
we therefore set the number of points to 300 and extend the sweep range to [10
50000]. In order to compensate for the discrete rectangular pulse used to per-
turb the system, we choose the setting external reference for the control-to-
output transfer function and discrete pulse for the output impedance.

Loop Gain Analysis

Compensator settings The compensator should attain a crossover frequency
of fc = 5kHz. At this frequency the open-loop control-to-output transfer func-
tion has a phase of nearly −180◦. It should be lifted by 52◦ to get a peak over-
shoot of 16%. This is achieved using a PD compensator with a zero at fz =
1.7 kHz, a pole at fp = 14.5 kHz and a dc gain of k = (fc/f0)

2
√
fz/fp/G0 ≈ 0.3.

For a zero stationary error a PI compensator with an inverted zero at fZ =
500Hz is added.
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Using the Impulse Response Analysis block

The compensator is implemented as shown above. The compensator output is
limited to 0.1 . . . 0.9. In order to prevent windup problems during the steady-
state analysis the integrator is limited to the same range.

Loop gain The gain of the closed control loop is measured by inserting the
Loop Gain Analysis block into the loop path. A good place is the feedback path
as shown below. The average steady-state load voltage is 15V; the initial per-
turbation amplitude is therefore chosen as 1e-2. The convergence of the initial
steady-state analysis can be accelerated by pre-charging the capacitor to its av-
erage steady-state voltage.

The resulting bode plot of the closed-loop gain shown in the figure below. Also
shown are the open-loop control-to-output function with a dashed line and the
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PID compensator transfer function with a dotted line. As you can see, the de-
sign goals for crossover frequency and phase margin have been reached.

State-Space Averaging

Another method for obtaining the open-loop transfer functions of a circuit is a
technique called state-space averaging. This topic is fairly complex and could
easily fill a book of its own. This manual therefore assumes that you are famil-
iar with the concept and just highlights how to use PLECS in the process.

The small-signal ac model of a dc converter operating in continuous conduction
mode (CCM) is described by the equation system

d

dt
x̃(t) = Āx̃(t) + B̄ũ(t) +

{
(A1 −A2)x̄+ (B1 −B2)ū

}
m̃(t)

ỹ(t) = C̄x̃(t) + D̄ũ(t) +
{
(C1 −C2)x̄+ (D1 −D2)ū

}
m̃(t)

where the quantities x̃(t), ũ(t), ỹ(t) and m̃(t) are small ac variation around the
operating point x̄, ū, ȳ and m̄. The averaged state-space matrices Ā, B̄, C̄ and
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D̄ are defined as

Ā = m̄A1 + (1− m̄)A2

B̄ = m̄B1 + (1− m̄)B2

C̄ = m̄C1 + (1− m̄)C2

D̄ = m̄D1 + (1− m̄)D2

where the subscript 1 denotes the interval when the switch is conducting and
the diode blocking, and the subscript 2 denotes the interval when the switch is
blocking and the diode conducting.

You can use PLECS to calculate the different matrices A1, A2 etc. and from
these the various transfer functions. Using the buck converter from the previ-
ous example, the first step is to determine the internal order of the switches:

load_system('plBuckSweep');
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names = plecs('get', 'plBuckSweep/Circuit', ...
'StateSpaceOrder');

names.Switches

ans =
'Circuit/FET'
'Circuit/D'

Next you retrieve the state-space matrices for the two circuit topologies:

plecs('set', 'plBuckSweep/Circuit', 'SwitchVector', [1 0]);
t1 = plecs('get', 'plBuckSweep/Circuit', 'Topology');

plecs('set', 'plBuckSweep/Circuit', 'SwitchVector', [0 1]);
t2 = plecs('get', 'plBuckSweep/Circuit', 'Topology');

Now you can calculate the averaged state-space matrices:

m = 15/28;
A = t1.A*m + t2.A*(1-m);
B = t1.B*m + t2.B*(1-m);
C = t1.C*m + t2.C*(1-m);
D = t1.D*m + t2.D*(1-m);

Output impedance The output impedance is the transfer function from a
state-space input (the current source I_ac) to a state-space output (the volt-
meter Vm). Such a transfer function is given by:

Ỹ(s)

Ũ(s)
= C̄(sI− Ā)−1B̄+ D̄

Since the circuit model is a MIMO (multi-input multi-output) model, you need
to specify the indices of the proper elements in the input and output vector. You
can identify them using the fields Inputs and Outputs of the struct names that
you retrieved earlier:

names.Inputs

ans =
'Circuit/V_dc'
'Circuit/I_ac'
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names.Outputs

ans =
'Circuit/Vm'
'Circuit/Am'
'Circuit/FET'
'Circuit/FET'
'Circuit/D'
'Circuit/D'

So, the output impedance is the transfer function from input 2 to output 1. If
you have the Control System Toolbox, you can now display the Bode diagram:

bode(ss(A,B(:,2),C(1,:),D(1,2)), {2*pi*100, 2*pi*50000})

The figure below shows the output impedance drawn with a solid line. The dots
represent the data points returned by the ac sweep.
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Open-loop control-to-output transfer function The control-to-output
transfer function describes the effect of the small ac variation m̃ on the system
outputs. From the small-signal ac model equations we find that

Ỹ(s)

M̃(s)
= Cco(sI−Aco)

−1Bco +Dco
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with

Aco = Ā

Bco =
{
− (A1 −A2)Ā

−1B̄+ (B1 −B2)
}
ū

Cco = C̄

Dco =
{
− (C1 −C2)Ā

−1B̄+ (D1 −D2)
}
ū

Note that Bco and Dco are column vectors since there is only one scalar input
variable, m̃. The vector ū is a column vector consisting of the dc input voltage
and the small-signal ac current.

This leads to the following program code:

u = [28; 0];

B_co = (-(t1.A-t2.A)*(A\B)+(t1.B-t2.B))*u;
D_co = (-(t1.C-t2.C)*(A\B)+(t1.D-t2.D))*u;

bode(ss(A,B_co,C(1,:),D_co(1)), {2*pi*100, 2*pi*50000})

The figure below shows the control-to-output transfer function drawn with a
solid line. The dots represent the data points returned by the ac sweep.
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8

C-Scripts

C-Scripts provide a powerful and comfortable mechanism for implementing cus-
tom control blocks in the C programming language. They enable you to interact
with the solver engine on a level very similar to that of built-in blocks.

Typical applications where C-Scripts are useful include:

• Implementing complex non-linear and/or piecewise functions. These would
otherwise need to be modeled with complex block diagrams that are hard to
read and maintain.

• Implementing modulators or pulse generators that require exact but flexible
time step control.

• Incorporating external C code, e.g. for a DSP controller, into a simulation
model.

There is no need to manually compile any code or even to install a compiler. A
built-in compiler translates your C code on-the-fly to native machine code and
links it dynamically into PLECS.

A detailed description of how C-Scripts work is given in the following section.
For a quick start you can also have a look at the C-Script examples further be-
low.

How C-Scripts Work

Since C-Scripts interact so closely with the solver engine, a good understand-
ing of how a dynamic system solver works is advantageous. This is described in
detail in the chapter “How PLECS Works” (on page 27).
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C-Script Functions

A C-Script block, like any other control block, can be described as a mathemat-
ical (sub-)system having a set of inputs u, outputs y and state variables xc, xd

that are related to each other by a set of equations:

y = foutput(t, u, xc, xd)

xnext
d = fupdate(t, u, xc, xd)

ẋc = fderivative(t, u, xc, xd)

A C-Script block has an individual code section for each of these functions and
two additional sections for code to be executed at the start and termination
of a simulation. The C code that you enter in these sections is automatically
wrapped into C functions; the actual function interface is hidden to allow for
future extensions. You can access block variables such as inputs, outputs and
states by means of special macros that are described further below. The solver
calls these C functions as required during the different stages of a simulation
(see “Model Execution” on page 33).

Start Function

The start function is called at the beginning of a simulation. If the C-Script has
continuous or discrete state variables, they should be initialized here using the
macros ContState(i) and DiscState(i).

Output Function

The output function is called during major and minor time steps in order to
update the output signals of the block. The block inputs and outputs and the
current time can be accessed with the macros InputSignal(i, j), OutputSig-
nal(i, j) and CurrentTime.

If you need to access any input signal during the output function call, you must
check the Input has direct feedthrough box on the Setup pane of the C-
Script dialog. This flag influences the block execution order and the occurrence
of algebraic loops (see “Block Sorting” on page 31).
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In general, output signals should be continuous and smooth during minor time
steps; discontinuities or sharp bends should only occur during major time steps.
Whether or not the call is made for a major time step can be inquired with the
IsMajorStep macro. For details see “Modeling Discontinuities” below.

Note It is not safe to make any assumptions about the progression of time be-
tween calls to the output function. The output function may be called multiple
times during the same major time step, and the time may jump back and forth
between function calls during minor time steps. Code that should execute ex-
actly once per major time step should be placed in the update function.

Update Function

If the block has discrete state variables, the update function is called once dur-
ing a major time step after the output functions of all blocks have been pro-
cessed. During this call, the discrete state variables should be updated using
the DiscState macro.

Derivative Function

If the block has continuous state variables, the derivative function is called
during the integration loop of the solver. During this call, the continuous state
derivatives should be updated using the ContDeriv macro.

Derivatives should be continuous and smooth during minor time steps; discon-
tinuities or sharp bends should only occur during major time steps. For details
see “Modeling Discontinuities” below.

Terminate Function

The terminate function is called at the end of a simulation – regardless of
whether the simulation stop time has been reached, the simulation has been
stopped interactively, or an error has occurred. Use this function to free any re-
sources that you may have allocated during the start function (e.g. file handles,
memory etc.).
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Store Custom State Function

This function is called at the end of a simulation before the terminate function.
Use this function to store any custom values which are needed to restore the
state of the C-Script. Continuous and discrete states are automatically stored.
Use the macros WriteCustomStateDouble, WriteCustomStateInt and Write-
CustomStateData to serialize your data.

Restore Custom State Function

This function is called after the start function and before the first call of the
output function. The continuous and discrete states have already been restored
at this point. Use this function to initialize your block with a previously stored
custom state. Use the macros ReadCustomStateDouble, ReadCustomStateInt
and ReadCustomStateData to deserialize your data and SetErrorMessage to re-
port any issues to the user during restoring.

Code Declarations

This code section is used for global declarations and definitions (that is, global
in the scope of the C-Script block). This is the place to include standard library
headers (e.g. math.h or stdio.h) and to define macros, static variables and
helper functions that you want to use in the C-Script functions.

You can also include external source files. The directory containing the model
file is automatically added to the included search path, so you can specify the
source file path relative to the model file.

Modeling Discontinuities

If the behavior of your C-Script block changes abruptly at certain instants, you
must observe the following two rules in order to obtain accurate results:

1 If the time at which a discontinuity or event occurs is not known a priori but
depends on the block inputs and/or states, you must define one or more zero-
crossing signals, which aid the solver in locating the event. Failure to do so
may result in a jitter on the event times.

2 During minor time steps, continuous state derivatives and output signals
must be continuous and smooth functions. Failure to observe this may lead
to gross numerical integration errors.
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Defining Zero-crossing Functions

To define zero-crossing signals, register the required number of signals on
the Setup pane of the C-Script dialog. In the output function, use the macro
ZCSignal(i) to assign values to the individual zero-crossing signals depending
e.g. on the block inputs or states or the current simulation time. The solver con-
stantly monitors all zero-crossing signals of all blocks. If any one signal changes
its sign during the current integration step, the step size is reduced so that the
next major time step occurs just after the first zero-crossing. (See also “Event
Detection Loop” on page 34.)

For instance, to model a comparator that must change its output when the in-
put crosses a threshold of 1, you should define the following zero-crossing sig-
nal:

ZCSignal(0) = InputSignal(0, 0) - 1.;

Without the aid of the zero-crossing signal, the solver might make one step at
a time when the input signal is e.g. 0.9 and the next step when the input signal
has already increased to e.g. 1.23, so that the C-Script block would change its
output too late.

With the zero-crossing signal, and provided that the input signal is continuous,
the solver will be able to adjust the step size so that the C-Script output will
change at the correct time.

Note If a zero-crossing signal depends solely on the simulation time, i.e. if an
event time is known a priori, it is recommended to use a discrete-variable sam-
ple time and the NextSampleHit macro instead. (See “Discrete-Variable Sample
Time” below.)

Keeping Functions Continuous During Minor Time Steps

The solver integrates the continuous state derivatives over a given interval (i.e.
the current time step) by evaluating the derivatives at different times in the
interval. It then fits a polynomial of a certain order to approximate the integral.
(See also “Integration Loop” on page 34.) The standard Dormand-Prince solver,
for instance, uses 6 derivative evaluations and approximates the integral with a
polynomial of 5th order.
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Obviously, the derivative of this polynomial is again a polynomial of one order
less. On the other hand, to approximate a discontinuous or even just a non-
smooth derivative function, a polynomial of infinite order would be required.
This discrepancy may lead to huge truncation errors. It is therefore vital to de-
scribe the continuous state derivatives as piecewise smooth functions and make
sure that only one subdomain of these functions is active throughout one inte-
gration step.

The output signal of a C-Script block might be used as the input signal of an
integrator and thus might become the derivative of a continuous state variable.
Therefore, output signals should be described as piecewise smooth functions as
well.

Returning to the example of the comparator above, the complete output func-
tion code should look like this:

if (IsMajorStep)
{
if (InputSignal(0, 0) >= 1.)

OutputSignal(0, 0) = 1.;
else

OutputSignal(0, 0) = 0.;
}

ZCSignal(0) = InputSignal(0, 0) - 1.;

The condition if (IsMajorStep) ensures that the output signal can only
change in major steps. It remains constant during the integration loop regard-
less of the values that the input signal assumes during these minor time steps.
The zero-crossing signal, however, is also updated in minor time steps during
the event detection loop of the solver.

Sample Time

A C-Script block can model a continuous system, a discrete system, or even a
hybrid system having both continuous and discrete properties. Depending on
which kind of system you want to model, you need to specify an appropriate
Sample time on the Setup pane of the C-Script dialog. The sample time de-
termines at which time steps (and at which stages) the solver calls the different
C-Script functions.
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Continuous Sample Time

Blocks with a continuous sample time (setting 0 or [0, 0]) are executed at
every major and minor time step. You must choose a continuous sample time
if

• the C-Script models a continuous (or piecewise continuous) function,
• the C-Script has continuous states or,
• the C-Script registers one or more zero-crossing signals for event detection.

Semi-Continuous Sample Time

Blocks with a semi-continuous sample time (setting [0, -1]) are executed
at every major time step but not at minor time steps. You can choose a semi-
continuous instead of a continuous sample time if the C-Script produces only
discrete output values and does not need zero-crossing signals.

Discrete-Periodic Sample Time

Blocks with a discrete-periodic sample time (setting Tp or [Tp, To]) are exe-
cuted at regularly spaced major time steps. The sample period Tp must be a
positive real number. The sample offset To must be a positive real number in
the interval 0 ≤ To < Tp; it may be omitted if it is zero.

The time steps, at which the output and update functions are executed, are cal-
culated as n · Tp + To with an integer n.

Discrete-Variable Sample Time

Blocks with a discrete-variable sample time (setting -2 or [-2, 0]) are exe-
cuted at major time steps that are specified by the blocks themselves.

In a C-Script you assign the time, when the block should be executed next, to
the macro NextSampleHit. This can be done either in the output or update func-
tion. At the latest, after the update function call, the NextSampleHit must be
greater than the current simulation time. Otherwise, the simulation will be
aborted with an error.

If a C-Script only has a discrete-variable sample time, the time of the first sam-
ple hit must be assigned in the start function. Otherwise, the C-Script will
never be executed. During the start function, the simulation start time is avail-
able via the macro CurrentTime.
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Note For discrete-variable sample times, PLECS Blockset can control the
time steps taken by the Simulink solvers only indirectly by using an internal
zero-crossing signal. Therfore, the actual simulation time at a discrete-variable
sample hit may be slightly larger than the value that was specified as the next
sample hit.

The solvers of PLECS Standalone, however, can evaluate the sample hit re-
quests directly and are therefore guaranteed to meet the requests exactly.

Multiple Sample Times

If you want to model a hybrid system, you can specify multiple sample times in
different rows of an n × 2 matrix. For example, if your C-Script has continuous
states but you must also ensure that it is executed every 0.5 seconds with an
offset of 0.1 seconds, you would enter [0, 0; 0.5, 0.1].

You can use the macro IsSampleHit(i) in the output and update functions in
order to inquire which of the registered sample times has a hit in the current
time step. The index i is a zero-based row number in the sample time matrix.
In the above example, if your C-Script should perform certain actions only at
the regular sampling intervals, you would write

if (IsSampleHit(1))
{
// this code is only executed at t == n*0.5 + 0.1

}

To access the sample times during execution of the C-Script, use the macros
SampleTimePeriod(i) and SampleTimeOffset(i). In the case of inherited sam-
ple times, the actual resolved values are returned, not [-1, 0] (see “Sample
Times” on page 38).

User Parameters

If you want to implement generic C-Scripts that can be used in different con-
texts, you can pass external parameters into the C functions.

External parameters are entered as a comma-separated list in the Parameters
field on the Setup pane of the C-Script dialog. The individual parameters can
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be specified as MATLAB expressions and can reference workspace variables.
They must evaluate to real scalars, vectors, matrices, 3d-arrays or strings.

Within the C functions you can inquire the number of external parameters with
the macro NumParameters. The macros ParamNumDims(i) and ParamDim(i, j)
return the number of dimensions of the individual parameters and their sizes.
In the case of strings, 1 and the length of the string measured in C characters
(char) is returned, respectively. Note that because the strings are UTF-8 en-
coded, the length returned by ParamDim(i, j) may be larger than the number
of unicode characters in the string.

To access the actual parameter values, use the macro ParamRealData(i, j),
where j is a linear index into the data array. For example, to access the value in
a certain row, column and page of a 3d-array, you write:

int rowIdx = 2;
int colIdx = 0;
int pageIdx = 1;
int numRows = ParamDim(0, 0);
int numCols = ParamDim(0, 1);
int elIdx = rowIdx + numRows*(colIdx + numCols*pageIdx);
double value = ParamRealData(0, elIdx);

To access string parameters, use the macro ParamStringData(i). For example,
to use the second parameter as an error message, you may write:

SetErrorMessage(ParamStringData(1));

Runtime Checks

If the box Enable runtime checks on the Setup pane of the C-Script dialog
is checked, C-Script macros that access block data (e.g. signals values, states,
parameters etc.) are wrapped with protective code to check whether an array
index is out of range. Also, the C-Script function calls are wrapped with code
to check for solver policy violations such as modifying states during minor time
steps or accessing input signals in the output function without enabling direct
feedthrough.

These runtime checks have a certain overhead, so once you are sure that your
C-Script is free of errors you can disable them in order to increase the simula-
tion speed. This is not recommended, however, because in this case access viola-
tions in your C-Script may cause PLECS to crash.
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Note The runtime checks cannot guard you against access violations caused
by direct memory access.

C-Script Examples

This section presents a collection of simple examples that demonstrate the dif-
ferent features of the C-Script and that you can use as starting points for your
own projects. Note that the functionality of the example blocks is already avail-
able from blocks in the PLECS library.

A Simple Function – Times Two

The first example implements a block that simply multiplies a signal with 2.
This block is described by the following system equation:

y = foutput(t, u, xc, xd) = 2 · u

Block Setup The block has one input, one output, no states and no zero-
crossing signals. It has direct feedthrough because the output function depends
on the current input value. Since the output signal is continuous (provided that
the input signal is) the sample time is also continuous, i.e. [0, 0] or simply 0.

Output Function Code

OutputSignal(0, 0) = 2.*InputSignal(0, 0);

In every major and minor time step, the output function retrieves the current
input value, multiplies it with 2 and assigns the result to the output.

Discrete States – Sampled Delay

This example implements a block that samples the input signals regularly with
a period of one second and outputs the samples with a delay of one period. Such
a block is described by the following set of system equations:

y = foutput(t, u, xc, xd) = xd

xnext
d = fupdate(t, u, xc, xd) = u
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Remember that in a major time step the solver first calls the block output func-
tion and then the block update function.

Block Setup The block has one input and one output. One discrete state vari-
able is used to store the samples. The block does not have direct feedthrough
because the input signal is not used in the output function but only in the up-
date function. The sample time is [1, 0] or simply 1.

Output Function Code

OutputSignal(0, 0) = DiscState(0);

Update Function Code

DiscState(0) = InputSignal(0, 0);

Continuous States – Integrator

This example implements a block that continuously integrates the input signal
and outputs the value of the integral. Such a block is described by the following
set of system equations:

y = foutput(t, u, xc, xd) = xc

ẋc = fderivative(t, u, xc, xd) = u

Block Setup The block has one input and one output. One continuous state
variable is used to integrate the input signal. The block does not have direct
feedthrough because the input signal is not used in the output function but only
in the derivative function. The sample time is continuous, i.e. [0, 0] or simply
0.

Output Function Code

OutputSignal(0, 0) = ContState(0);

Derivative Function Code

ContDeriv(0) = InputSignal(0, 0);

223



8 C-Scripts

Event Handling – Wrapping Integrator

This examples extends the previous one by implementing an integrator that
wraps around when it reaches an upper or lower boundary (e.g. 2π and 0). Such
an integrator is useful for building e.g. a PLL to avoid round-off errors that
would occur if the phase angle increased indefinitely. This wrapping property
can actually not be easily described with mathematical functions. However, the
C code turns out to be fairly simple.

Block Setup The block has the same settings as in the previous example. Ad-
ditionally, it requires two zero-crossing signals, in order to let the solver find the
exact instants, at which the integrator state reaches the upper or lower bound-
ary.

Output Function Code

#define PI 3.141592653589793
if (IsMajorStep)
{
if (ContState(0) > 2*PI)

ContState(0) -= 2*PI;
else if (ContState(0) < 0)

ContState(0) += 2*PI;
}
ZCSignal(0) = ContState(0);
ZCSignal(1) = ContState(0) - 2*PI;

OutputSignal(0, 0) = ContState(0);

In every major time step, if the integrator state has gone beyond the upper or
lower boundary, 2π is added to or subtracted from the state so that it lies within
the boundaries again. In every major and minor time step, the zero-crossing
signals are calculated so that they become zero when the state is 0 resp. 2π. Fi-
nally, the integrator state is assigned to the output.

Note, that the state must not be modified during minor time steps, because then
the solver is either itself updating the state (while integrating it) or trying to
find the zeros of the zero-crossing functions, which in turn depend on the state.
In either case an external modification of the state will lead to unpredictable
results.

Derivative Function Code

ContDeriv(0) = InputSignal(0, 0);
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Piecewise Smooth Functions – Saturation

This example implements a saturation block that is described by the following
piecewise system equation:

y = foutput(t, u, xc, xd) =


1, for u ≥ 1

u, for − 1 < u < 1

−1, for 1 ≤ u

When implementing this function, care must be taken to ensure that the active
output equation does not change during an integration loop in order to avoid
numerical errors (see “Modeling Discontinuities” on page 216).

Block Setup The block has one input, one output and no state variables. In
order to make sure that a major step occurs whenever the input signal crosses
the upper or lower limit, two zero-crossing signals are required.

Output Function Code

static enum { NO_LIMIT, LOWER_LIMIT, UPPER_LIMIT } mode;

if (IsMajorStep)
{
if (InputSignal(0, 0) > 1.)

mode = UPPER_LIMIT;
else if (InputSignal(0, 0) < -1.)

mode = LOWER_LIMIT;
else

mode = NO_LIMIT;
}

switch (mode)
{
case NO_LIMIT:

OutputSignal(0, 0) = InputSignal(0, 0);
break;

case UPPER_LIMIT:
OutputSignal(0, 0) = 1.;
break;

case LOWER_LIMIT:
OutputSignal(0, 0) = -1.;
break;

}
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ZCSignal(0) = InputSignal(0, 0) + 1.;
ZCSignal(1) = InputSignal(0, 0) - 1.;

Ensuring that only one output equation will be used throughout an entire inte-
gration step requires a static mode variable that will retain its value between
function calls. The active mode is determined in major time steps depending on
the input signal. In the subsequent minor time steps, the equation indicated by
the mode variable will be used regardless of the input signal.

If the step size were not properly limited and the input signal went beyond the
limits during minor time steps, so would the output signal. This is prevented
by the two zero-crossing signals that enable the solver to reduce the step size as
soon as the input signal crosses either limit.

Note Instead of the static mode variable, a discrete state variable could also
be used to control the active equation. In this particular application a static
variable is sufficient because information needs to be passed only from one ma-
jor time step to the subsequent minor time steps.

However, if information is to be passed from one major time step to a later ma-
jor time step, a discrete state variable should be used, so that it can also be
stored between multiple simulation runs.

Multiple Sample Times – Turn-on Delay

A turn-on delay is often needed for inverter controls in order to prevent short-
circuits during commutation. When the input signal changes from 0 to 1, the
output signal will follow after a prescribed delay time, provided that the input
signal is still 1 at that time. When the input signal changes to 0, the output is
reset immediately.

Block Setup The block has one input and one output. One discrete state vari-
able is required to store the input signal value from the previous major time
step.

Two sample times are needed: a semi-continuous sample time so that the input
signal will be sampled at every major time step, and a discrete-variable sample
time to enforce a major time step exactly after the prescribed delay time. The
Sample time parameter is therefore set to [0, -1; -2, 0].
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As an additional feature the delay time is defined as an external user parame-
ter.

Code Declarations

#include <float.h>
#define PREV_INPUT DiscState(0)
#define DELAY ParamRealData(0, 0)

The standard header file float.h defines two numerical constants, DBL_MAX and
DBL_EPSILON, that will be needed in the output function. Additionally, two con-
venience macros are defined in order to make the following code more readable.

Start Function Code

if (NumParameters != 1)
{
SetErrorMessage("One parameter required (delay time).");
return;

}
if (ParamNumDims(0) != 2

|| ParamDim(0, 0) != 1 || ParamDim(0, 1) != 1
|| DELAY <= 0.)

{
SetErrorMessage("Delay time must be a positive scalar.");
return;

}

The start function checks whether the proper number of external parameters
(i.e. one) has been provided, and whether this parameter has the proper dimen-
sions and value.

Output Function Code

if (InputSignal(0, 0) == 0)
{
OutputSignal(0, 0) = 0;
NextSampleHit = DBL_MAX;

}
else if (PREV_INPUT == 0)
{
NextSampleHit = CurrentTime + DELAY;
if (NextSampleHit == CurrentTime)

NextSampleHit = CurrentTime * (1.+DBL_EPSILON);
}
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else if (IsSampleHit(1))
{
OutputSignal(0, 0) = 1;
NextSampleHit = DBL_MAX;

}

If the input signal is 0, the output signal is also set to 0 according to the block
specifications. The next discrete-variable hit is set to some large number (in
fact: the largest possible floating point number) because it is not needed in this
case.

Otherwise, if the input signal is not 0 but it has been in the previous time step,
i.e. if it just changed from 0 to 1, a discrete-variable sample hit is requested at
DELAY seconds later than the current time.

Finally, if both the current and previous input signal values are nonzero and
the discrete-variable sample time has been hit, i.e. if the delay time has just
passed and the current input is still nonzero, the output is set to 1 and the next
discrete-variable hit time is again reset to the largest possible floating point
number.

The condition if (NextSampleHit == CurrentTime) requires special expla-
nation: If DELAY is very small and the current time is very large, the sum of
these two floating point numbers might again yield the current time value
due to roundoff errors, which would lead to a simulation error. In this case the
next sample hit is increased to the smallest possible floating point number that
is still larger than the current time. Admittedly, this problem will only occur
when the current time and the delay time are more than 15 decades apart, and
so it might be considered academic.

Update Function Code

PREV_INPUT = InputSignal(0, 0);

In the update function, the current input value is stored as the previous input
value for the following time step.

Store Custom State Code

WriteCustomStateDouble(NextSampleHit);

The previous input value is stored automatically because it is a discrete state.
The NextSampleHit has to be stored in the custom state.
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Restore Custom State Code

NextSampleHit = ReadCustomStateDouble();

Restore the NextSampleHit value. When the simulation starts from a stored
system state that was stored before this block was added to the schematic, the
read operation will fail and PLECS reports a runtime error.

Load External Files

The C-Script can be used to load external functions. In this example, the two
functions sum and product are defined in external files and executed via the C-
Script.

Header File

float sum(float a, float b);
float product(float a, float b);

Content of the file cscript_example_external_files.h.

C Source Code File

#include "cscript_example_external_files.h"

float sum(float a, float b)
{

return a + b;
}

float product(float a, float b)
{

return a * b;
}

Content of the file cscript_example_external_files.c.
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Code Declarations

#include "cscript_example_external_files.h"
#include "cscript_example_external_files.c"

#define In1 InputSignal(0,0)
#define In2 InputSignal(1,0)

#define Out1 OutputSignal(0,0)
#define Out2 OutputSignal(1,0)

The external header and C source code files are loaded. Furthermore, two input
and two output variables are definded.

Output Function Code

Out1 = sum(In1,In2);
Out2 = product(In1,In2);

In the update function, the two output variables are updated with the sum and
product of the two input variables.

C-Script Macros

The following table summarizes the macros that can be used in the C-Script
function code sections.

C-Script Data Access Macros

Macro Type Access Description

NumInputTerminals int R Returns the number of input terminals.

NumOutputTerminals int R Returns the number of output terminals.

NumInputSignals
(int i)

int R Returns the number of elements (i.e. the width) of
the signal connected to the ith input terminal.

NumOutputSignals
(int i)

int R Returns the number of elements (i.e. the width) of
the signal connected to the ith output terminal.

NumContStates int R Returns the number of continuous states.
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C-Script Data Access Macros (contd.)

Macro Type Access Description

NumDiscStates int R Returns the number of discrete states.

NumZCSignals int R Returns the number of zero-crossing signals.

NumParameters int R Returns the number of user parameters.

CurrentTime double R Returns the current simulation time (resp. the
simulation start time during the start function
call).

NumSampleTime int R Returns the number of sample times.

SampleTimePeriod
(int i)

int R Returns the period of the ith sample time.

SampleTimeOffset
(int i)

int R Returns the offset of the ith sample time.

IsMajorStep int R Returns 1 during major time steps, else 0.

IsSampleHit
(int i)

int R Returns 1 if the ith sample time currently has a
hit, else 0.

NextSampleHit double R/W Specifies the next simulation time when the block
should be executed. This is relevant only for blocks
that have registered a discrete-variable sample
time.

InputSignal
(int i, int j)

double R Returns the value of the jth element of the ith
input signal terminal. See C-Script block (see page
381) for information on how to increase the default
number of input signal terminals.

OutputSignal
(int i, int j)

double R/W Provides access to the value of the jth element of
the ith output signal terminal. See C-Script block
(see page 381) for information on how to increase
the default number of output signal terminals.
Output signals may only be changed during the
output function call.
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C-Script Data Access Macros (contd.)

Macro Type Access Description

ContState
(int i)

double R/W Provides access to the value of the ith continu-
ous state. Continuous state variables may not be
changed during minor time steps.

ContDeriv
(int i)

double R/W Provides access to the derivative of the ith contin-
uous state.

DiscState
(int i)

double R/W Provides access to the value of the ith discrete
state. Discrete state variables may not be changed
during minor time steps.

ZCSignal
(int i)

double R/W Provides access to the ith zero-crossing signal.

ParamNumDims
(int i)

int R Returns the number of dimensions of the ith user
parameter.

ParamDim
(int i, int j)

int R Returns the jth dimension of the ith user parame-
ter.

ParamRealData
(int i, int j)

double R Returns the value of the jth element of the ith
user parameter. The index j is a linear index
into the parameter elements. Indices into multi-
dimensional arrays must be calculated using the
information provided by the ParamNumDims and
ParamDim macros. If the parameter is a string, this
macro will produce a runtime error or an access
violation if runtime checks are disabled.

ParamStringData
(int i)

char* R Returns a pointer to a UTF-8 encoded, null-
terminated C string that represents the ith user
parameter. If the parameter is not a string, this
macro will produce a runtime error or returns NULL
if runtime checks are disabled.
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C-Script Data Access Macros (contd.)

Macro Type Access Description

WriteCustomStateDouble
(double val)

WriteCustomStateInt
(int val)

WriteCustomStateData
(void *data, int len)

void

void

void

W Write a custom state of type double, int or custom
data with len number of bytes. Use multiple calls
for multiple values.

ReadCustomStateDouble()

ReadCustomStateInt()

ReadCustomStateData
(void *data, int len)

int

double

void

R Read a custom state of type double, int or custom
data with len number of bytes. Use multiple calls
for multiple values.

SetErrorMessage
(char *msg)

void W Use this macro to report errors that occur in your
code. The simulation will be terminated after the
current simulation step. In general, this macro
should be followed by a return statement. The
pointer msg must point to static memory.

SetWarningMessage
(char *msg)

void W Use this macro to report warnings. The warning
status is reset as soon as the current C-Script
function returns, so you do not need to reset it
manually. The pointer msg must point to static
memory.

Note The values of the input and output signals are not stored in contiguous
memory. Therefore, signal values may only be accessed by using the macros, not
by pointer arithmetic. For example, trying to access the second output using the
following code will fail:

double *output = &OutputSignal(0, 0); // not recommended
output[1] = 1; // fails
*(output + 1) = 1; // fails
OutputSignal(0, 1) = 1; // ok
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Note Prefer reading and writing of custom state variables with double and
int values over void* custom data. The latter cannot handle the byte order (big
endian, little endian) of your platform. To store a vector of doubles use the fol-
lowing code:

// platform independent code, recommended
WriteCustomStateInt(vectorSize);
for (int i = 0; i < vectorSize; ++i)
{

WriteCustomStateDouble(vector[i]);
}

// platform dependent code, not recommended
WriteCustomStateData(&vectorSize, sizeof(vectorSize));
WriteCustomStateData(vector, vectorSize*sizeof(double));

Deprecated Macros

The macros NumInputs, NumOutputs, Input(int i) and Output(int i) are dep-
recated but are still supported for C-Scripts that have only a single input and
output terminal.
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State Machines

State machines are a formalism for event driven systems that move from one
discrete state to another in response to discrete events. PLECS lets you graph-
ically create and edit state machines using common concepts such as boxes for
states and curved arrows for transitions, and simulate them together with a
surrounding system. You can feed continuous or discrete signals into a state
machine e.g. to react to external events and output discrete signals from a state
machine e.g. as control signals. Actions are specified in the C programming lan-
guage and can be associated with states and transitions. Thanks to their built-
in timer events, state machines are equally useful for implementing supervi-
sory controls and complex modulators.

This chapter is subdivided into three sections. The first section describes how
you interact with the graphical editor to create and modify state machines. The
second section describes the semantics of a state diagram and how they influ-
ence the execution of the state machine. The third section contains examples
that highlight different features of the state machine.
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Working with State Machines

To create a new state machine, copy the State Machine block from the library
browser into your model. A double-click on the block opens a new window with
the state machine editor.

State machine editor window

Note The State Machine uses a distinct editor. You cannot copy block dia-
gram components to a state chart or state machine elements to a block diagram
schematic.
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Working with States

A state is represented by a box with rounded corners. The name of the state is
displayed at the top of the box in a title bar with a gray background.

State

Enter:
/* enter action */

An empty state

To create a new state, click on the button in the tool bar. Move the mouse
anywhere on the chart and click the left mouse button to place the new state.
To cancel the operation, press the Escape key, click the right mouse button, or
click anywhere outside the editor window.

To duplicate an existing state, hold down the Ctrl key (cmd key on macOS),
then click on the title bar of the state and drag the mouse to a new location in
the same or a different editor window.

To change the size of a state, move the mouse over one of the four corners so
that the pointer shape becomes a diagonal arrow. Hold down the mouse button,
drag the mouse until the dashed box has the desired size and release the mouse
button.

To change the name of a state, double-click on the name and edit it on the
chart. Valid state names must start with a letter and can contain only letters
and numbers. Whitespace, dashes or underscores are not allowed.

To edit the actions associated with the state, double-click on a free area within
the state. This will open a tabbed code editor, in which you can edit the Enter,
During and Exit actions for the state. If there is enough space, the action code
is also displayed on the state. By double-clicking on the code, you can edit it di-
rectly on the chart.

Hierarchical States

A state can contain other states. The containing state is called a super-state or
compound state, the contained state, a sub-state. A state that does not contain
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other states is called a leaf state. Compound states do not have a During ac-
tion.

To create hierarchical states, resize a state so that it is large enough to fully
surround another state, then move the other state into the first state.

SuperState

SubState

A super-state containing a sub-state

Note Overlapping states are forbidden and will produce an error message at
simulation start.

Working with Transitions

Transitions are represented by curved arrows from one state to another (or also
the same) state. To create a new transition, move the mouse over one of the
edges so that the pointer shape changes to crosshairs. Hold down the mouse
button, drag the mouse to another edge until the pointer shape changes to dou-
ble crosshairs and release the mouse button. If you release the mouse button
before the pointer shape has changed to double crosshairs, the operation is can-
celled.

To change the start point or end point of an existing transition, move the mouse
pointer over either end until the pointer shape changes to an open hand, then
hold down the mouse button and drag the mouse to the new location until the
pointer shape changes to a double crosshair. If you release the mouse button
before the pointer shape has changed to double crosshairs, the operation is can-
celled and the transition remains unchanged.

Depending on its shape, a transition may have one or more control handles that
become visible when you hover the mouse over the transition. To change the
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shape of the transition, hold down the mouse button over a control handle and
drag it to the desired location.

A double-click on a transition opens the Transition Editor. It allows you to edit
the Priority, Trigger, Condition and Action of the transition. The priority is
also displayed at the origin of the transition arrow, and a double-click lets you
edit it directly on the chart. Trigger, condition and action combined form the
transition label in the form Trigger [Condition] / Action, which is shown
next to the transition arrow. To change the location of the label along the tran-
sition, hold down the mouse button over the transition and drag it to the de-
sired location. By double-clicking on the label you can edit it directly on the
chart.

State1 State2

1

 Trigger [Condition] / Action

A transition with labels and control handle

Default Transitions

A default transition is represented by a curved arrow originating from a black
dot. It is required on the top level of a state machine to define which state shall
become active at the beginning of a simulation. If a compound state is the di-
rect target of any transitions, it also requires an internal default transition to
define which of its sub-states shall become active when an incoming transition
is activated.

To create a new default transition, click on the button in the tool bar. Move
the mouse anywhere on the chart and click the left mouse button to place the
origin of the default transition (marked with a dot). Then, move the mouse
to draw the transition to an edge of the desired target state and click the left
mouse button again. To cancel the operation, press the Escape key, click the
right mouse button, or click anywhere on the chart that is not the edge of a
state.
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Working with Junctions

Junctions are branching points that join or fork transitions. They are repre-
sented by circles. Junctions are useful e.g. if the state that shall become active
at the beginning of a simulation depends on one or more conditions. To create a
new junction, click on the button in the tool bar.

State1 State2

1 [c] 2

A junction forking a default transition

Working with Annotations

Annotations are text blocks that you can place freely on a chart for documenta-
tion purposes. They have no influence on the execution of the state machine. To
create a new annotation, double-click on an empty space in the chart and start
typing. To move an annotation, hold down the mouse button over the annota-
tion and drag it to the desired location. To edit an annotation, double-click on it.
Choose Text alignment from the Format menu to change the text alignment
of the annotation.
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State Machine Configuration

To open the configuration editor, click on the button in the tool bar.

State machine configuration editor

Input Signals

On the Inputs tab you define input signals that are fed from the surrounding
system into the state machine. Input signals are specified by an Input vari-
able and a Type.
The Input variable specifies the name with which you refer to the input signal
in actions or expressions. It is also displayed next to the corresponding input
terminal of the State Machine block. The variable name must be unique and
a valid C identifier, i.e. it must start with a letter and consist of only letters,
numbers and underscores.
The Type specifies whether the signal is a continuous signal or a trigger sig-
nal. For continuous and trigger signals, the actual signal value is assigned to
the input variable in every time step. For trigger signals, additionally an event
with the same name will be created when the input signal changes in the pre-
scribed way. A rising trigger event is created in the instant when the input sig-
nal changes from zero to non-zero, a falling trigger event is created in the in-
stant when the input signal changes from non-zero to zero. For trigger signals,
a trigger symbol is also displayed next to the corresponding input terminal of
the State Machine block.
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Note Signal changes from one non-zero value to another non-zero value, e.g.
from a negative value to a positive value, do not cause an event to be created.

Input signals appear on the State Machine block in the order in which they ap-
pear in the list. Use the four buttons to the left of the list to add or remove in-
puts or to change their order.

Output Signals

On the Outputs tab you define output signals that are fed from the state ma-
chine to the surrounding system. Output signals are defined by an Output
variable that specifies the name with which you refer to the output signal in
actions. It is also displayed next to the corresponding output terminal on the
State Machine block. The variable name must be unique and a valid C identi-
fier, i.e. it must start with a letter and consist of only letters, numbers and un-
derscores.

Output signals appear on the State Machine block in the order in which they
appear in the list. Use the four buttons to the left of the list to add or remove
outputs or to change their order.

Constants and Variables

On these tabs you define global variables that you can use in actions or expres-
sions. They must have a unique and valid C identifier, i.e. they must start with
a letter and consist of only letters, numbers and underscores.

Constants remain constant during a simulation. The value is determined by
the Value expression, which can be any valid MATLAB or Octave expression
that evaluates to a scalar number.

Variables can be modified by actions. They are in fact additional discrete state
variables in addition to the active state of the state machine. Their initial value
is determined by the Initial value expression, which can be any valid MAT-
LAB or Octave expression that evaluates to a scalar number.

242



Working with State Machines

C Declarations

The C declarations tab is used for global declarations and definitions. It is
also the place to include standard library headers and to define macros and
static helper functions that you want to use in actions and expressions.

In addition to the user defined variables and functions, the following pre-
defined macros can be used in actions:

Predefined Action Macros

Macro Type Access Description

CurrentTime double R Returns the current simulation time.

SetErrorMessage(char *msg) void W Use this macro to report errors that occur
in your code. The simulation will be termi-
nated after the current simulation step. In
general, this macro should be followed by
a return statement. The pointer msg must
point to static memory.

SetWarningMessage(char *msg) void W Use this macro to report warnings. The
warning status is reset after the execution
of the current simulation step, so you do not
need to reset it manually. The pointer msg
must point to static memory.

Note User defined variable or function names must not start with fsm_ or
FSM_ because these prefixes are reserved for internal symbols in the generated
code.

Hierarchical Transition Order

This option is only relevant for hierarchical state machines (see “Hierarchical
States” on page 237 and “Execution of Hierarchical State Machines” on page
248). When both a super-state and its sub-states have outgoing transitions
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that are eligible to be taken at the same time, this option determines whether
transitions from the super-state take precedence over transitions from the sub-
states or vice versa.

Sample Time

This parameter determines how the state machine is executed. The table be-
low lists the valid parameter values for the different sample time types. For a
detailed description of the sample time types see “Sample Time” (on page 38).

Type Value

Continuous [0, 0] or 0

Discrete-Periodic [Tp, To] or Tp Tp: Sample period, Tp > 0

To: Sample offset, 0 ≤ To < Tp

Inherited [-1, 0] or -1

With a Continuous sample time, the state machine is executed at every sim-
ulation step. With a Discrete-Periodic sample time, the state machine is exe-
cuted only at the regularly spaced simulation steps prescribed by the sample
time values. With an Inherited sample time, the actual sample time depends on
the blocks that are connected to the State Machine block.

Animation

This option is useful for debugging your state machine. When the option is
checked, the simulation is paused whenever a transition fires, and the tran-
sition path including the source and target state is highlighted. The simula-
tion can be continued by selecting Continue from the Simulation menu or by
pressing the Space key.
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State Machine Execution

A state machine is executed at each simulation step that the solver makes if it
has a continuous sample time or at the specified time steps if it has a discrete
sample time (see also “Sample Time” on page 244). During each execution, the
following steps are performed:

1 The triggers and conditions of all transitions leaving the currently active
state are evaluated.

2 If a transition “fires”, i.e. if both trigger and condition are true, the State Ma-
chine executes the Exit action of the current state followed by the transition
action and the Enter action of the target state.

3 If no transition fires, the During action of the current state is executed.

During each execution, at most one state change can occur, i.e. at most one
transition can be taken. Note that a transition may include one or more junc-
tions (see “Compound Transitions” below).

Transition Evaluation

A transition from an active state can be taken when the specified trigger event
occurs, provided that the condition is true at the same time. Both trigger and
condition are optional. If a transition does not specify a trigger, any event (in-
cluding the mere execution of the state machine) will qualify so that the transi-
tion can be taken if the condition is true. If a transition does not specify a condi-
tion, it can be taken when the trigger event occurs.

Transition Priorities

It is possible that multiple transitions from the current state are eligible to be
taken at the same time. In this case, the transition with the lower priority num-
ber is given precedence.

Compound Transitions

A compound transition is a complete path from one leaf state to another (or the
same) leaf state consisting of two or more transitions joined by one or more
junctions. A compound transition can only be taken when all trigger events
specified by the individual transitions occur and all conditions specified by the
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individual transitions are true. If a compound transition is taken, the actions
of all individual transitions are executed in the order of the transitions on the
path.

Trigger Types

PLECS distinguishes between explicit, implicit and time-based triggers.

Explicit Trigger

An explicit trigger is an input signal that is configured as a trigger signal. It is
active whenever the input signal changes in the specified way. In the example
shown below, the event E is active whenever the signal connected to the input
terminal E changes from zero to a non-zero value or from a non-zero value to
zero. If State1 is active at this time, the transition fires.

State1 State2

1  E
E

State machine with explicit trigger

Note It is expected that the input signal for an explicit trigger changes only
at discrete instants. The signal source is responsible for registering an appro-
priate zero-crossing function to enable a variable-step solver to make a simula-
tion step at the instant at which the signal reaches or leaves zero.

Implicit Trigger

An implicit trigger is a relational expression. It is active when the expression
becomes true, i.e. if it evaluated to false in the previous time step and evaluates
to true in the current time step. If the state machine uses a continuous sample
time, an implicit trigger will also register a zero-crossing function to enable the
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solver to make a simulation step at precisely the instant at which the expres-
sion becomes true.

Notice the fundamental difference between an implicit trigger x > 0 and a con-
dition [x > 0] illustrated in the example below.

State1 State2

1  x>0

State1 State2

1  [x>0]

Implicit trigger (left) versus condition (right)

In the left chart, if State1 is active, the transition will be taken only when x
becomes greater than 0. However, if x is already greater than 0 when State1 be-
comes active, nothing will happen until x becomes less than or equal to 0 and
afterwards greater than 0 again. If x is a continuous signal and the state ma-
chine uses a continuous sample time, the state machine will be executed pre-
cisely at the instant at which x crosses 0.

In the right chart, if State1 is active, the transition will be taken at any exe-
cution of the state machine if x happens to be greater than 0. If x is already
greater than 0 when State1 becomes active, the transition will be taken dur-
ing the next execution of the state machine. However, the execution of the state
machine does not necessarily coincide with the instant at which x crosses 0.

Time-Based Trigger

A time-based trigger is an expression of the form AFTER(delay), where delay is
an expression that evaluates to a number. If the state machine uses a continu-
ous sample time, the trigger event will be created exactly delay seconds after
the source state of the transition was entered. If the state machine uses a dis-
crete sample time, the trigger event will be created at the first execution time
following the delay period.

Trigger Lifetime

A trigger event is only valid in the simulation step in which it is created. If no
transition responds to the event in this time step, the event is ignored; it is not
deferred to a subsequent execution of the state machine.
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Execution of Hierarchical State Machines

In a hierarchical state machine it is not immediately obvious which transitions
are eligible to be taken, and which actions are executed when a transition is
taken.

Transition Evaluation

Only leaf states, i.e. states that do not contain other states, can be the active
state. But compound states that directly or indirectly contain the active state
are also implicitly active. When the state machine searches for a transition to
be taken, it not only evaluates the transitions leaving the active leaf state but
also those that leave the implicitly active compound states.
In the case where both a transition from a super-state and a transition from a
sub-state are eligible to be taken, the option Hierarchical Transition Order
in the State Machine Configuration dialog determines whether the transi-
tion leaving the super-state is given precedence over the transition leaving the
sub-state (top to bottom) or vice versa (bottom to top). Note that in this con-
text leaf states are considered to be at the bottom of a state hierarchy.

Execution Sequence

The two states that are directly connected by a transition are designated the
main source and the main target of the transition. Notice that source state and
target state may both be compound states. The lowest compound state that con-
tains both source state and target state is designated the lowest common an-
cestor (LCA) state. When the transition is taken, the following actions are exe-
cuted in this order:

1 The Exit actions of all states from the active leaf state (which may be the
main source state or a sub-state of it) up to (but not including) the LCA state
are executed from bottom to top.

2 The transition action is executed.

3 The Enter actions of the state hierarchy inside the LCA state to the main
target state are executed from top to bottom.

4 If the main target is a compound state, the action of its local default transi-
tion is executed followed by the Enter action of the default transition’s target
state. If necessary, this process is repeated recursively until a leaf state is
reached.
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This process is illustrated in the example below. Consider that S11 is the cur-
rently active state, so both S1 and S are also implicitly active.

S

S1

Exit:
S1_exit();

S11

Exit:
S11_exit();

S2

Enter:
S2_enter();

S21

Enter:
S21_enter(); / D_action();

1  T1 / T1_action();

1  T2 / T2_action();

Execution sequence in a hierarchical state machine

Transition T1 has S1 and S2 as its main source and target. Their LCA state is
S. S2 is a compound state, and therefore after it has been entered, its internal
default transition causes S21 to be entered. Consequently, taking T1 causes
the following sequence of actions to be executed: S11_exit(); S1_exit();
T1_action(); S2_enter(); D_action(); S21_enter();.
Transition T2 has S11 and S21 as its main source and target. Their LCA state
is again S. Taking T2 causes the following sequence of actions to be executed:
S11_exit(); S1_exit(); T2_action(); S2_enter(); S21_enter();.

State Machine Example

Oven Control

This example demonstrates a simple oven control. While the oven is in oper-
ation, a hysteresis type control shall keep the oven temperature within a cer-
tain tolerance band around a set point by switching the heating on and off. As a
safety measure, we also want to ensure that the heating is always switched off
when the oven door is open.
The oven is modeled with a heat source, a thermal capacitance and resistance
and a thermometer. The oven control is implemented with a state machine. Its
inputs are the actual and the desired temperature and the status of the oven
door, which is defined as 0 when the door is open and 1 when the door is closed.
The state machine output is the command for the oven heating. The state ma-
chine uses a constant variable DeltaT that determines the limits of the toler-
ance band around the desired temperature.
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ActT
SetT Heating

Oven Control

Door

Open

Closed

K100

Temperature
Set Point

DoorOpen DoorClosed

NoHeating

Heating

Enter:
Heating = 1;

Exit:
Heating = 0;

1 !Door

1  Door

1

 ActT<SetT-DeltaT

1

 ActT>SetT+DeltaT

1 [!Door] 2

2

1

 [ActT<SetT]

Example of a simple oven control

The top-level states DoorOpen and DoorClosed reflect the actual state of the
oven door. The default transition, which is taken at the first execution of the
state machine, is branched with a Junction. If the door is initially open, the (i.e.
Door==0), DoorOpen state will be entered, else the DoorClosed state. Notice
that the unconditional “else” branch leaving the Junction has a lower prece-
dence than the conditional branch. Afterwards, the state machine will transi-
tion from DoorOpen to DoorClosed when Door becomes non-zero and vice
versa when the input variable Door becomes zero.

DoorClosed is a compound state. Therefore, when it is the target of a tran-
sition, its internal default transition will be executed, which is also branched
with a Junction. If the actual temperature is below the set point when the de-
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fault transition executes, the Heating state will be entered, else the NoHeat-
ing state. Afterwards, the state machine will transition from Heating to No-
Heating when the actual temperature becomes greater than the upper limit
and from NoHeating to Heating, when the actual temperature becomes less
than the lower limit.

The output variable Heating is set to 1 when the Heating state is entered, and
to 0 when the state is left. Notice that it does not matter whether the state is
left because the transition ActT>SetT+DeltaT is taken when the temperature
exceeds the upper limit, or because the transition !Door is taken when the oven
door is opened. In either case, the Exit action of Heating is executed and the
heating is turned off.

For this state machine to work properly, the Hierarchical Transition Order
must be set to top to bottom (which is the default). This is important because
a door opening event might coincide with the event that the actual temperature
exceeds the upper or lower limit. The higher-level door opening event must take
precedence over the lower-level temperature events so that the state machine
will unconditionally transition to the DoorOpen state.
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Simulation Scripts

Running simulations from a script allows you to perform automated tasks such
as examining the effect of varying parameters or post-processing the simulation
results to extract relevant information.

PLECS Standalone offers two different scripting methods:

• Simulation scripts written in Octave can be executed directly in PLECS
Standalone. This is described in section “Simulation Scripts in PLECS Stan-
dalone” (on page 253).

• PLECS offers an RPC interface that allows any other program that can send
XML-RPC or JSON-RPC requests to control PLECS. Many scripting lan-
guages support XML-RPC or JSON-RPC out of the box, for example Python
or Ruby. Other scripting language extensions for XML-RPC or JSON-RPC
support are available for free on the internet. This is described in section
“RPC Interface in PLECS Standalone” (on page 262).

In PLECS Blockset, scripts are written and executed in the MATLAB environ-
ment. Simulink offers a scripting interface to modify parameters and run simu-
lations from a script. A detailed description of the Simulink scripting options is
out of the scope of this manual, please refer to the documentation for Simulink
instead. PLECS Blockset offers additional commands to control the parameters
of PLECS Circuits. They are described in section “Command Line Interface in
PLECS Blockset” (on page 273).

Simulation Scripts in PLECS Standalone

Simulation scripts are managed in the Simulation Scripts dialog shown below.
To open the dialog, select Simulation scripts... from the Simulation menu of
the schematic editor.
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The left hand side of the dialog window shows a list of the scripts that are cur-
rently configured for the model. To add a new script, click the button marked
+ below the list. To remove the currently selected script, click on the button
marked -. You can reorder the scripts by clicking and dragging an entry up and
down in the list.

The right hand side of the dialog window shows the script in an editor window.
Each script must have a unique Description.

The button Run/Stop starts the currently selected script or aborts the script
that is currently running.

To make changes to the script without running it, press the Accept button. The
Revert button takes back any changes that have been made after the Accept
or Run button was pressed.

PLECS Standalone uses GNU Octave to execute simulation scripts. The
Octave language is very similar to MATLAB. A full syntax description of
the Octave scripting language is available in the Octave documentation,
http://www.gnu.org/software/octave/doc/interpreter/.

Any console output generated by Octave will appear in the Octave Console
window, which you can open by choosing Show Console from the Window
menu.

Overview of PLECS Scripting Extensions

In addition to generic Octave commands you can use the following commands to
control PLECS from within a simulation script.
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Clearing the Octave Console

The command

plecs('clc')

clears the console window. Note that the native Octave commands clc and home
do not have any effect on the console window.

Reading and Setting Component Parameters

The command

plecs('get', 'componentPath')
plecs('get', 'componentPath', 'parameter')

returns the value of parameter of the PLECS component indicated by the com-
ponentPath as a string. If parameter is omitted, a struct array with all available
parameters is returned.

plecs('set', 'componentPath', 'parameter', 'value')

sets the value of parameter of the PLECS component indicated by the compo-
nentPath to value.

The special parameter ’CurrentComponent’ can be used to query the path of
the current component as defined above. The component path has to be an
empty string:

plecs('get', '', 'CurrentComponent')

The special parameter ’CurrentCircuit’ can be used to query the name of the
model that is currently executed. It cannot be queried interactively from the
console. The component path has to be an empty string:

plecs('get', '', 'CurrentCircuit')

This command is useful for constructing a component path that does not de-
pend on the model name.

A leading dot (.) in the component path is substituted with the current compo-
nent or model as described in “Path Substitution” (on page 259).
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Handling of Errors and Warnings in Initialization Commands

During the execution of model or mask initialization commands, error messages
issued with the Octave command error are caught by PLECS and shown in the
Diagnostics window. To show a warning message in the Diagnostics window,
use the command

plecs('warning','warning message')

Note that the native Octave command warning will only print the warning mes-
sage to the Octave console.

Handling of Traces in Scopes

plecs('scope', 'scopePath', 'HoldTrace')
plecs('scope', 'scopePath', 'HoldTrace', 'traceName')

saves the values of the last simulation to a new trace in the scope indicated by
the scopePath. If given and unique, traceName is used as the name for the new
trace, otherwise a default name is assigned. In both cases the method returns
the name given to the trace.

plecs('scope', 'scopePath', 'RemoveTrace', 'traceName')

removes the trace named traceName from the scope indicated by the scopePath.

plecs('scope', 'scopePath', 'ClearTraces')

clears all traces in the scope indicated by the scopePath.

plecs('scope', 'scopePath', 'SaveTraces', 'fileName')

saves the trace data of the scope at scopePath to the file fileName for later refer-
ence. If fileName is not an absolute path, it is interpreted relative to the model
file that contains the scope.

plecs('scope', 'scopePath', 'LoadTraces', 'fileName')
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loads the trace data from the file fileName into the scope at scopePath. If file-
Name is not an absolute path, it is interpreted relative to the model file that
contains the scope.
The scopePath is the path to the scope within the model including the model
name, e.g. ’DTC/Mechanical’. To access Bode plots from the analysis tools, use
the model name followed by ’/Analyses/’ followed by the name of the analysis,
e.g. ’BuckOpenLoop/Analyses/Control to Output TF (AC Sweep)’. A leading
dot (.) in the scope path is substituted with the current component or model as
described in “Path Substitution” below.

Retrieving Scope Cursor Data

plecs('scope', 'scopePath', 'GetCursorData', [t1 t2])
plecs('scope', 'scopePath', 'GetCursorData', [t1 t2], ...

'analysis1', 'analysis2', ...)

returns a struct with the signal values and analysis results (as specified) for the
cursor positions t1 and t2. Valid analysis names are delta, min, max, absmax,
mean, rms and thd. For more information about scope cursors see section “Cur-
sors” (on page 103).
The return value is a struct with the two fields time and cursorData. The field
time is the vector [t1, t2]. The field cursorData is a nested cell array where
the outer index corresponds to the number of plots in the scope and the inner
index corresponds to the number of signals in a plot. Each cell is a struct with
the fields cursor1 and cursor2 with the signal values and additional fields for
the analyses that you have specified. If the scope has multiple traces, the field
values are vectors with one element for each trace.
So, if the return value is stored in data, to access the signal value at cursor 2
for the third trace of the second signal in the first plot, you write

data.cursorData{1}{2}.cursor2(3)

Exporting Scope Data

plecs('scope', 'scopePath', 'ExportCSV', 'fileName')
plecs('scope', 'scopePath', 'ExportCSV', 'fileName', [t1 t2])

saves all scope data or only the specified time range as comma separated values
to the text file fileName. If fileName is not an absolute path, it is interpreted
relative to the model file that contains the scope.
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Exporting Scope Bitmaps

plecs('scope', 'scopePath', 'ExportBitmap', 'fileName')
plecs('scope', 'scopePath', 'ExportBitmap', 'fileName', ...)

saves a bitmap of the scope to the file fileName. If fileName is not an absolute
path, it is interpreted relative to the model file that contains the scope. The file
format is determined automatically from the file extension. The fileName ar-
gument may be followed by one or more name/value pairs to override settings
defined in the scope as follows:

Scope Settings for Bitmap Export

Name Description

Size A two-element integer vector specifying the width and
height of the bitmap in pixels.

Resolution An integer specifying the resolution of the bitmap in
pixels per inch.

TimeRange A two-element real vector specifying the time range of
the data to be shown.

XLim A two-element real vector specifying the limits of
the x-axis. For a normal scope this is equivalent to
TimeRange.

YLim A cell array containing two-element real vectors speci-
fying the limits of the y-axis of the plot(s). For a scope
with a single plot a vector may be given directly.

XLabel A string specifying the x-axis label.

YLabel A cell array containing strings specifying the y-axis la-
bels of the plot(s). For a scope with a single plot a string
may be given directly.

Title A cell array containing strings specifying the title of the
plot(s). For a scope with a single plot a string may be
given directly.
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Scope Settings for Bitmap Export (contd.)

Name Description

LegendPosition A string specifying the legend position. Possible values
are none, topleft, topmiddle, topright, bottomleft,
bottommiddle and bottomright.

Font A string specifying the font name to be used for the
labels and the legend.

LabelFontSize An integer specifying the label font size in points.

LegendFontSize An integer specifying the legend font size in points.

Path Substitution

If a component or scope path is a simple dot (.) or starts with a dot followed by
a slash (./), the dot is substituted with the current component.

When a command is executed interactively from the console, the current com-
ponent is the last component that was clicked on in the schematic editor; if the
last click was not on a component, the current component is undefined.

During the evaluation of block parameters or mask initialization commands
the current component is the component that is currently evaluated; during the
evaluation of the model initialization commands it is the model itself.

Running a Simulation

plecs('simulate')
plecs('simulate', optStruct)

runs a simulation. The optional argument optStruct can be used to override
model parameters; for detailed information see section “Scripted Simulation
and Analysis Options” (on page 268).

If any outports exist on the top level of the simulated model, the command re-
turns a struct consisting of two fields, Time and Values. Time is a vector of sim-
ulation time stamps. Values is an m × n array containing the output values,
where m is the number of time stamps and n is the number of output signals.
The order of the signals is determined by the port numbers.
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By default, the simulation result contains all simulation steps that the solver
makes. This can be controlled with the solver options OutputTimes and Output-
TimesOption, where OutputTimes is a double vector and OutputTimesOption is
a string as described in the table “Control of Output Times in Scripted Simula-
tions” (on page 271).

Running an Analysis

plecs('analyze', 'analysisName')
plecs('analyze', 'analysisName', optStruct)

runs the analysis defined in the Analysis Tools dialog under the name analysis-
Name. The optional argument optStruct can be used to override model param-
eters; for detailed information see section “Scripted Simulation and Analysis
Options” (on page 268).

For a Steady-State Analysis, if any outports exist on the top level of the simu-
lated model, the command returns a struct consisting of two fields, Time and
Values as described above. The signal values at the outports are captured after
a steady-state operating point has been obtained. By default, the simulation re-
sult contains all simulation steps that the solver makes. This can be controlled
with the solver options OutputTimes and OutputTimesOption, where Output-
Times is a double vector and OutputTimesOption is a string as described in the
table “Control of Output Times in Scripted Simulations” (on page 271).

For an AC Sweep, an Impulse Response Analysis or a Multitone Analysis, the
command returns a struct consisting of three fields, F, Gr and Gi. F is a vector
that contains the perturbation frequencies of the analysis. The rows of the ar-
rays Gr and Gi consist of the real and imaginary part of the transfer function as
defined in the analysis. If the command is called without a return value, a scope
window will open and display the Bode diagram of the transfer function.

Running Multiple Simulations or Analyses in Parallel

Instead of a single optStruct argument you can also pass a 1 × N cell array of
option structures to the simulate and analyze commands:

plecs('simulate', optStructs)
plecs('analyze', 'analysisName', optStructs)
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PLECS will then automatically distribute the individual simulations or anal-
yses to the CPU cores available on your computer. After completion, the com-
mands return a 1 × N cell array containing the individual result structs or –
in case of a runtime error – a string with the error message. To avoid memory
problems when running a large number of parallel simulations, you can define
an appropriate OutputTimes vector in the SolverOpts struct in order to reduce
the number of data points.

Additionally, you can define a callback function that is called whenever an in-
dividual simulation or analysis has completed. The arguments of this callback
function are the index of the corresponding option set in the input cell array
and the result of the simulation or analysis. The return value of the callback
function is stored in the output cell array instead of the simulation or analysis
result.

The following code example shows how such a callback function can be used
to replace the simulation result with a single aggregated value (the maximum
value of a certain output signal).

% Aggregate the simulation results in a callback function.
function result = callback(index, result)

if isstruct(result)
% If the simulation succeeded, replace the simulation result
% with the maximum value of the first output signal.
result = max(result.Values(1,:));

end
end

out = plecs('simulate', optStructs, ...
@(index, result) callback(index, result));

The notation using an anonymous function handle is due to a technical limita-
tion of Octave 4.4 regarding nested functions.

Example Script

The following script runs a parameter sweep by setting the variable varL to the
values in inductorValues. It is used in the demo model BuckParamSweep.

mdlVars = struct('varL', 50e-6);
opts = struct('ModelVars', mdlVars);

plecs('scope', './Scope', 'ClearTraces');
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inductorValues = [50, 100, 200];
for ix = 1:length(inductorValues)
opts.ModelVars.varL=inductorValues(ix) * 1e-6;
out = plecs('simulate', opts);
plecs('scope', './Scope', 'HoldTrace', ...

['L=' mat2str(inductorValues(ix)) 'uH']);
[maxv, maxidx] = max(out.Values(1,:));
printf('Max current for L=%duH: %f at %fs\n', ...

inductorValues(ix), maxv, out.Time(maxidx));
end

The first two lines create a struct ModelVars with one field, varL. The struct is
embedded into another struct named opts, which will be used later to initialize
the simulation parameters.

Inside the for-loop each value of inductorValues is assigned successively to
the structure member variable varL. A new simulation is started, the result
is saved in variable out for post-processing. By holding the trace in the scope
the scope output will remain visible when a new simulation is started; the scope
path uses a dot to reference the current model (see “Path Substitution” on page
259). The name of the trace is the inductance value.

The script then searches for the peak current in the simulation results and out-
puts the value and the time, at which it occurred, in the Octave Console.

RPC Interface in PLECS Standalone

The RPC interface allows you to control PLECS Standalone from an external
program. PLECS acts as an HTTP server which processes XML-RPC1 or JSON-
RPC2 requests from clients. PLECS automatically determines the actual pro-
tocol used by a client from the request and sends the response using the same
protocol.

The RPC interface in PLECS is disabled by default. It must be enabled in the
PLECS preferences before a connection can be established. The TCP port to use
can also be configured in the PLECS preferences.

1http://xmlrpc.com
2https://www.jsonrpc.org
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Note RPC connections to PLECS are only allowed from clients running on the
same computer as PLECS. Therefore, the connection should always be initiated
using localhost in the server URL.

Usage Examples

The code examples in this section assume that PLECS is configured to use TCP
port 1080 for RPC.

Using XML-RPC in Python

The following Python 3 code initializes an XML-RPC client for PLECS:

import xmlrpc.client
proxy = xmlrpc.client.ServerProxy("http://localhost:1080")

Using JSON-RPC in MATLAB

To facilitate interaction between PLECS Standalone and MAT-
LAB, Plexim provides a MATLAB class that can be downloaded from
https://github.com/plexim/matlab-jsonrpc. After copying the class file
jsonrpc.m to your MATLAB path, you can initialize a JSON-RPC client for
PLECS as follows:

proxy = jsonrpc('http://localhost:1080')

Overview of RPC Commands

Commands for PLECS start with plecs followed by a dot. If you are using a
Python or MATLAB client as described above, you invoke a command by ap-
pending it to the proxy object using a dot, e.g.:

proxy.plecs.load('C:/path/to/myModel.plecs')
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Opening and Closing a Model

The command

plecs.load('mdlFileName')

opens the model with the given mdlFileName. The filename should contain the
absolute path to the file.

The command

plecs.close('mdlName')

closes the model with the given name. The model will be closed unconditionally
without being saved, even if it has unsaved changes.

Reading and Setting Component Parameters

The command

plecs.get('componentPath')
plecs.get('componentPath', 'parameter')

returns the value of parameter of the PLECS component indicated by the com-
ponentPath as a string. If parameter is omitted, a struct array with all available
parameters is returned.

plecs.set('componentPath', 'parameter', 'value')

sets the value of parameter of the PLECS component indicated by the compo-
nentPath to value.

Handling of Traces in Scopes

plecs.scope('scopePath', 'HoldTrace')
plecs.scope('scopePath', 'HoldTrace', 'traceName')

saves the values of the last simulation to a new trace in the scope indicated by
the scopePath. If given, traceName is used as the name for the new trace, other-
wise a default name is assigned.
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plecs.scope('scopePath', 'RemoveTrace', 'traceName')

removes the trace named traceName from the scope indicated by the scopePath.

plecs.scope('scopePath', 'ClearTraces')

clears all traces in the scope indicated by the scopePath.

plecs.scope('scopePath', 'SaveTraces', 'fileName')

Saves the trace data of the scope at scopePath to the file fileName for later
reference. If fileName is not an absolute path, it is interpreted relative to the
model file that contains the scope.

plecs.scope('scopePath', 'LoadTraces', 'fileName')

Loads the trace data from the file fileName into the scope at scopePath. If file-
Name is not an absolute path, it is interpreted relative to the model file that
contains the scope.

The scopePath is the path to the scope within the model including the model
name, e.g. ’DTC/Mechanical’. To access Bode plots from the analysis tools, use
the model name followed by ’/Analyses/’ followed by the name of the analysis,
e.g. ’BuckOpenLoop/Analyses/Control to Output TF (AC Sweep)’.

Running a Simulation

The command

plecs.simulate('mdlName')
plecs.simulate('mdlName', optStruct)

runs a simulation of the model named mdlName. The optional argument opt-
Struct can be used to override model parameters and solver options; for more
information about this struct see section “Scripted Simulation and Analysis Op-
tions” (on page 268).

If any outports exist on the top level of the simulated model, the command re-
turns a struct consisting of two fields, Time and Values. Time is a vector of sim-
ulation time stamps. Values is an m × n array containing the output values,
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where m is the number of time stamps and n is the number of output signals.
The order of the signals is determined by the port numbers.

By default, the simulation result contains all simulation steps that the solver
makes. This can be controlled with the solver options OutputTimes and Output-
TimesOption, where OutputTimes is a double vector and OutputTimesOption is
a string as described in the table “Control of Output Times in Scripted Simula-
tions” (on page 271).

Note Running a simulation is a blocking command. The RPC server can exe-
cute only one blocking command at a time and will answer requests to execute
a second blocking command with an error message. If you want to run multiple
simulations in parallel via RPC, see “Running Multiple Simulations or Analy-
ses in Parallel” (on page 267).

Running an Analysis

The command

plecs.analyze('mdlName', 'analysisName')
plecs.analyze('mdlName', 'analysisName', optStruct)

runs the analysis named analysisName in the model named mdlName. The op-
tional argument optStruct can be used to override model parameters; for de-
tailed information see section “Scripted Simulation and Analysis Options” (on
page 268).

For a Steady-State Analysis, if any outports exist on the top level of the simu-
lated model, the command returns a struct consisting of two fields, Time and
Values as described above. The signal values at the outports are captured after
a steady-state operating point has been obtained. By default, the simulation re-
sult contains all simulation steps that the solver makes. This can be controlled
with the solver options OutputTimes and OutputTimesOption, where Output-
Times is a double vector and OutputTimesOption is a string as described in the
table “Control of Output Times in Scripted Simulations” (on page 271).

For an AC Sweep, an Impulse Response Analysis or a Multitone Analysis, the
command returns a struct consisting of three fields, F, Gr and Gi. F is a vector
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that contains the perturbation frequencies of the analysis. The rows of the ar-
rays Gr and Gi consist of the real and imaginary part of the transfer function as
defined in the analysis.

Note Running an analysis is a blocking command. The RPC server can exe-
cute only one blocking command at a time and will answer requests to execute
a second blocking command with an error message. If you want to run multiple
analyses in parallel via RPC, see “Running Multiple Simulations or Analyses in
Parallel” below.

Running Multiple Simulations or Analyses in Parallel

Instead of a single optStruct argument you can also pass a list of option struc-
tures to the simulate and analyze commands:

plecs.simulate('mdlName', optStructs)
plecs.analyze('mdlName', 'analysisName', optStructs)

PLECS will then automatically distribute the individual simulations or anal-
yses to the CPU cores available on your computer. After completion, the com-
mands return a list containing the individual result structs or – in case of a
runtime error – a string with the error message. To avoid memory problems
when running a large number of parallel simulations, you can define an appro-
priate OutputTimes vector in the SolverOpts struct in order to reduce the num-
ber of data points.

Example Script

The following Python script establishes an XML-RPC connection, loads a model
and simulates it twice. The scope output from each simulation is preserved by
holding the traces in the scope.

import xmlrpc.client
proxy = xmlrpc.client.ServerProxy("http://localhost:1080")

proxy.plecs.load("C:/Models/BuckParamSweep.plecs")
proxy.plecs.scope('BuckParamSweep/Scope', 'ClearTraces')
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opts = {'ModelVars' : { 'varL' : 50e-6 } }
result = proxy.plecs.simulate("BuckParamSweep", opts)
proxy.plecs.scope('BuckParamSweep/Scope',

'HoldTrace', 'L=50uH')

opts['ModelVars']['varL'] = 100e-6;
result = proxy.plecs.simulate("BuckParamSweep", opts)
proxy.plecs.scope('BuckParamSweep/Scope',

'HoldTrace', 'L=100uH')

Scripted Simulation and Analysis Options

When you start a simulation or analysis from a Simulation Script or via RPC,
you can pass an optional argument optStruct in order to override parameter
settings defined in the model. This enables you to run simulations for different
scenarios without having to modify the model file.

The argument optStruct is a struct that may contain the fields OutputFormat,
ModelVars, SolverOpts and – when starting an analysis – AnalysisOpts, which
are again structs as described below.

OutputFormat The optional field OutputFormat is a string that lets you
choose whether the results of a simulation or analysis should be returned as a
RPC struct (Plain) or in binary form using the MAT-file format (MatFile). The
binary format is much more efficient if the result contains many data points,
but the client may not be able to interpret it, so the default is Plain.

ModelVars The optional field ModelVars is a struct variable that allows you
to override variable values defined by the model initialization commands. Each
field name is treated as a variable name; the field value is assigned to the cor-
responding variable. Values can be numerical scalars, vectors, matrices or 3d
arrays or strings.

The override values are applied after the model initialization commands have
been evaluated and before the component parameters are evaluated as shown
in the figure below.

SolverOpts The optional field SolverOpts is a struct variable that allows you
to override the solver settings specified in the Simulation Parameters dialog.
Each field name is treated as a solver parameter name; the field value is as-
signed to the corresponding solver parameter. The following table lists the pos-
sible parameters.
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plecs.simulate()
plecs.analyze()

Execution order for Simulation Scripts (left) and RPC (right)

Solver Options in Scripted Simulations

Parameter Description

Solver The solver to use for the simulation. Possible values
are auto, dopri, radau and discrete. See section
“Standalone Parameters” (on page 111) for more de-
tails.

StartTime The start time specifies the initial value of the simula-
tion time variable t at the beginning of a simulation,
in seconds (s).

TimeSpan The simulation ends when the simulation time has
advanced by the specified time span.
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Solver Options in Scripted Simulations (contd.)

Parameter Description

StopTime This option is obsolete. It is provided to keep old
scripts working. We strongly advise against using it
in new code.

OutputTimes
OutputTimesOption

These options control the simulation times that are
included in the result of a scripted simulation. See the
table below.

InitialSystemState Specifies the initial system state used for the simu-
lation. This will override the System State setting
in the simulation parameters (see “System State” on
page 117).
The system state struct can be retrieved after the
completion of a simulation or steady-state analysis
using the command

plecs(’get’, ’mdlName’, ’SystemState’)

MaxStep See the description for Max Step Size in section
“Standalone Parameters” (on page 111). This option is
only evaluated for variable step solvers.

InitStep See the description for Initial Step Size in section
“Standalone Parameters” (on page 111). This option is
only evaluated for variable step solvers.

FixedStep This option specifies the fixed time increments for the
solver and also the sample time used for the state-
space discretization of the physical model. It is only
evaluated for the fixed step solver.

AbsTol See the description for Tolerances in section “Stan-
dalone Parameters” (on page 111).

RelTol See the description for Tolerances in section “Stan-
dalone Parameters” (on page 111).

Refine See the description for Refine factor in section
“Standalone Parameters” (on page 111).
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Control of Output Times in Scripted Simulations

OutputTimesOption Interpretation of OutputTimes

specified The simulation result contains only the simulation
times specified in the OutputTimes vector.
This is also the default behavior if only the vector Out-
putTimes is provided and OutputTimesOption is omit-
ted.

additional The simulation result contains the simulation times
specified in the OutputTimes vector in addition to all
simulation steps that the solver makes.

range The simulation result contains all simulation steps that
the solver makes within the time span from Output-
Times(1) to OutputTimes(end).
If the vector OutputTimes contains more than two val-
ues, the additional simulation times are also included
in the result.

AnalysisOpts For an analysis the optional field AnalysisOpts is a struct
variable that allows you to override the analysis settings defined in the Analy-
sis Tools dialog. Each field name is treated as an analysis parameter name, the
field value is assigned to the corresponding analysis parameter. The following
tables list the possible parameters

Analysis Options in Scripted Analyses

Parameter Description

TimeSpan System period length; this is the least common mul-
tiple of the periods of independent sources in the
system.

StartTime Simulation start time.

Tolerance Relative error tolerance used in the convergence
criterion of a steady-state analysis.
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Analysis Options in Scripted Analyses (contd.)

Parameter Description

MaxIter Maximum number of iterations allowed in a steady-
state analysis.

JacobianPerturbation Relative perturbation of the state variables used to
calculate the approximate Jacobian matrix.

JacobianCalculation Controls the way the Jacobian matrix is calculated
(full, fast). The default is fast.

InitCycles Number of cycle-by-cycle simulations that should
be performed before the actual analysis. This pa-
rameter can be used to provide the initial steady-
state analysis with a better starting point.

ShowCycles Number of steady-state cycles that should be sim-
ulated at the end of an analysis. This parameter is
evaluated only for a steady-state analysis.

FrequencyRange Range of the perturbation frequencies. This param-
eter is evaluated only for a small-signal analysis.

FrequencyScale Specifies whether the sweep frequencies should
be distributed on a linear or logarithmic scale.
This parameter is evaluated only for a small-signal
analysis.

AdditionalFreqs A vector specifying frequencies to be swept in ad-
dition to the automatically distributed frequencies.
This parameter is evaluated only for a small-signal
analysis.

NumPoints The number of automatically distributed perturba-
tion frequencies. This parameter is evaluated only
for a small-signal analysis.

Perturbation The full block path (excluding the model name)
of the Small Signal Perturbation block that will
be active during an analysis. This parameter is
evaluated only for a small-signal analysis.
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Analysis Options in Scripted Analyses (contd.)

Parameter Description

Response The full block path (excluding the model name) of
the Small Signal Response block that will record
the system response during an analysis. This pa-
rameter is evaluated only for a small-signal analy-
sis.

AmplitudeRange The amplitude range of the sinusoidal perturba-
tion signals for an ac sweep. This parameter is
evaluated only for an ac sweep.

Amplitude The amplitude of the discrete pulse perturbation
for an impulse response analysis. This parameter is
evaluated only for an impulse response analysis.

MaxNumberOfThreads The maximum number of parallel threads that may
be used during the analysis.

ShowResults Specifies whether to show a Bode plot after a small-
signal analysis. This parameter is evaluated only
for a small-signal analysis.

Command Line Interface in PLECS Blockset

PLECS Blockset offers a Command Line Interface (CLI) to access component
and circuit parameters from scripts or directly from the MATLAB command
line. The command syntax is

plecs('cmd', 'parameter1', 'parameter2', ...)

where cmd is one of the following commands: get, set, scope, thermal, export,
version, hostid.

Reading and Setting Parameters of Components

The command
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plecs('get', 'componentPath')
plecs('get', 'componentPath', 'parameter')

returns the value of parameter of the PLECS component indicated by the com-
ponentPath as a string. If parameter is omitted, a struct array with all available
parameters is returned.

plecs('set', 'componentPath', 'parameter', 'value')

sets the value of parameter of the PLECS component indicated by the compo-
nentPath to value.

The special parameter ’CurrentCircuit’ can be used to query the path to the
current PLECS Circuit. The component path has to be an empty string:

plecs('get', '', 'CurrentCircuit')

This command can only be used in the initialization commands of subsystems.

Handling of Errors and Warnings in Initialization Commands

During the execution of mask initialization commands, error messages issued
with the MATLAB command error are caught by PLECS and shown in the Di-
agnostics window. To show a warning message in the Diagnostics window, use
the command

plecs('warning','warning message')

Note that the native MATLAB command warning will only print the warning
message to the MATLAB command window.

Handling of Traces in Scopes

plecs('scope', 'scopePath', 'HoldTrace')
plecs('scope', 'scopePath', 'HoldTrace', 'traceName')

saves the values of the last simulation run to a new trace in the scope indicated
by the scopePath. If given and unique, traceName is used as the name for the
new trace, otherwise a default name is assigned. In both cases the method re-
turns the name given to the trace.
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plecs('scope', 'scopePath', 'RemoveTrace', 'traceName')

removes the trace named traceName from the scope indicated by the scopePath.

plecs('scope', 'scopePath', 'ClearTraces')

clears all traces in the scope indicated by the scopePath.

plecs('scope', 'scopePath', 'SaveTraces', 'fileName')

Saves the trace data of the scope at scopePath to the file fileName for later
reference. If fileName is not an absolute path, it is interpreted relative to the
model file that contains the scope.

plecs('scope', 'scopePath', 'LoadTraces', 'fileName')

Loads the trace data from the file fileName into the scope at scopePath. If file-
Name is not an absolute path, it is interpreted relative to the model file that
contains the scope.

Retrieving Scope Cursor Data

plecs('scope', 'scopePath', 'GetCursorData', [t1 t2])
plecs('scope', 'scopePath', 'GetCursorData', [t1 t2], ...

'analysis1', 'analysis2', ...)

returns a struct with the signal values and analysis results (as specified) for the
cursor positions t1 and t2. Valid analysis names are delta, min, max, absmax,
mean, rms and thd. For more information about scope cursors see section “Cur-
sors” (on page 103).
The return value is a struct with the two fields time and cursorData. The field
time is the vector [t1, ts]. The field cursorData is a nested cell array where
the outer index corresponds to the number of plots in the scope and the inner
index corresponds to the number of signals in a plot. Each cell is a struct with
the fields cursor1 and cursor2 with the signal values and additional fields for
the analyses that you have specified. If the scope has multiple traces, the field
values are vectors with one element for each trace.
So, if the return value is stored in data, to access the signal value at cursor 2
for the third trace of the second signal in the first plot, you write

data.cursorData{1}{2}.cursor2(3)
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Exporting Scope Data

plecs('scope', 'scopePath', 'ExportCSV', 'fileName')
plecs('scope', 'scopePath', 'ExportCSV', 'fileName', [t1 t2])

saves all scope data or only the specified time range as comma separated values
to the text file fileName. If fileName is not an absolute path, it is interpreted
relative to the model file that contains the scope.

Exporting Scope Bitmaps

plecs('scope', 'scopePath', 'ExportBitmap', 'fileName')
plecs('scope', 'scopePath', 'ExportBitmap', 'fileName', ...)

saves a bitmap of the scope to the file fileName. If fileName is not an absolute
path, it is interpreted relative to the model file that contains the scope. The file
format is determined automatically from the file extension. The fileName ar-
gument may be followed by one or more name/value pairs to override settings
defined in the scope as described in table “Scope Settings for Bitmap Export”
(on page 258).

Other CLI Commands

To retrieve the version information from PLECS as a string, enter

plecs('version')

To retrieve a struct with host ID and MATLAB license information, enter

plecs('hostid')

To check out a license for PLECS, enter

[success,message] = plecs('checkout')

If the check-out succeeds, the return variable success will be set to 1 and
message will be an empty string. Else, success will be set to 0 and message
will contain a detailed error message. When called without left-hand side ar-
guments, the command will raise a MATLAB error upon an unsuccessful check-
out and else execute silently.
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Examples

Some examples for using the command line interface in PLECS Blockset:

plecs('get', 'mdl/Circuit1')

returns the parameters of Circuit1 in the simulink model mdl.

plecs('get', 'mdl/Circuit1', 'Name')

returns the name of Circuit1.

plecs('get', 'mdl/Circuit1', 'CircuitModel')

returns the circuit simulation method of Circuit1.

plecs('get', 'mdl/Circuit1/R1')

returns the parameters of component R1 in circuit Circuit1.

plecs('set', 'mdl/Circuit1/R1', 'R', '2')

sets the resistance of component R1 in circuit Circuit1 to 2.

277



10 Simulation Scripts

278



11

Code Generation

As a separately licensed feature, PLECS can generate C code from a simulation
model to facilitate real-time simulations. Code generation is subject to certain
limitations, which are described in the first section of this chapter. The next two
sections describe how the code generation capabilities are used within PLECS
Standalone and PLECS Blockset, respectively.

Code Generation for Physical Systems

As described earlier in this manual, PLECS models physical systems using
piecewise linear state-space equations that can be described using multiple sets
of state-space matrices. For details see “Physical Model Equations” (on page
29).

During normal simulations, PLECS calculates new sets of state-space matrices
on the fly as the individual switching components change their states. This is
not possible in the generated C code because the algorithms for calculating the
matrices are proprietary and because the calculation would simply be too time
consuming under real-time constraints.

When generating code for a physical model, PLECS therefore embeds the ma-
trices for all combinations of switch states that it expects to encounter during
the execution of a simulation run. In general this means that for a system with
n switch elements 2n sets of state-space matrices are calculated and embedded
into the generated C code. The actual number can be reduced by eliminating
impossible combinations. For instance, the Triple Switch (see page 796) blocks
internally consists of 3 switch elements but it still only accounts for 3 instead
of 23 combinations because one and only one switch will conduct at any time.
Even so, systems with many switches will lead to large source and executable
files and long compile times.
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Maximum Number of Switches

The number of switch elements is limited to 16 or 32 per physical domain de-
pending on the integer word size. This is due to the fact that the switch states
of a physical domain are stored internally in a single unsigned integer variable.
Note that some components, such as the Triple Switch (see page 796), inter-
nally consist of more than one switch element.

Handling Naturally Commutated Devices

Switched physical models are difficult to handle in real-time simulations if the
natural switching instants can occur between two time steps. This is the case
for naturally commutated components where switching events are triggered by
internal quantities of the physical model. Examples of such components are the
diode (which turns on when the voltage becomes positive and turns off when
the current becomes negative) or the mechanical friction components (which
start slipping when the torque resp. force exceeds a certain level and become
stuck when the speed becomes zero).

During normal simulations, PLECS handles such non-sampled switching
events using an interpolation scheme (see “Interpolation of Non-Sampled
Switching Events” on page 36). This is not practical under real-time constraints
because the computation time required for the interpolation is several times
larger than that of an ordinary simulation step. In real-time simulations,
PLECS will therefore defer the switching to the immediately following time
step. Note that this reduces the accuracy compared to a normal simulation.

Switching Algorithm

A further difficulty with naturally commutated devices is that their conduction
state is usually influenced by the conduction states of other switches. During
normal simulations, PLECS solves this problem by iteratively toggling the con-
duction states of naturally commutated switches within one simulation step
until the boundary conditions of all switches are satisfied (see the description of
the Switch Manager in section “Physical Model Equations” on page 29).

When generating code for a physical model, PLECS lets you choose between
two switching algorithms, Iterative and Direct Look-up. You can specify the
algorithm individually for each physical model using special Model Settings
blocks that are connected to individual physical models, see Electrical Model
Settings on page 444, Rotational Model Settings on page 641 and Translational
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Model Settings on page 774. The default switching algorithm is Direct Look-
up.

Iterative PLECS generates code that implements an iterative switching
method as described above. As a consequence of the iteration, simulation steps,
in which a switching occurs, require more computation time than simulation
steps without switching events. This is usually undesirable in real-time simula-
tions because the longest execution time determines the feasible sample rate.

Direct Look-up Alternatively, PLECS can generate code that determines the
proper switch conduction states directly as functions of the current physical
model states and inputs and the gate signals of externally controlled switches.
In order to generate these direct look-up functions, PLECS must analyze all
possible transitions between all possible combinations of conduction states.
This increases the computation time of the code generation process but yields
nearly uniform execution times of simulation steps with or without switching
events.

In order to reduce the number of possible combinations of switch conduction
states and thus the code generation time and the code size, PLECS introduces
the condition that naturally commutated devices (e.g. diodes or IGBTs) can only
conduct if their current is non-zero. As a consequence, a diode may block even
though the voltage is forward-biased if there is another blocking switch con-
nected in series that prevents the current from flowing through the diode. This
can produce unexpected voltage waveforms even though otherwise the model
behaves correctly.

Consider the simple circuit shown below. Two diodes are connected in series but
opposing each other so that no current can flow regardless of the polarity of the
source voltage:
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Simulation of a circuit with two opposing diodes
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In the two graphs, the bold lines show the results from a normal simulation.
When the source voltage is positive, D1 conducts and D2 blocks, and hence the
voltage across D1 is zero and the voltage across D2 equals the negative source
voltage. As the source voltage becomes negative, D1 block and D2 conducts,
and accordingly the voltage across D1 equals the source voltage and the voltage
across D2 is zero.

The dotted stairstep lines show the results from generated code using the it-
erative switching method. As can be seen, the diodes behave in the same way
as in the normal simulation. In the generated code using the direct look-up
method shown with continuous stairstep lines, however, both diodes block at
all times because no current can ever flow through either of them. Accordingly,
the source voltage always divides evenly across the two diodes.
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Unsupported Components

PLECS currently does not support code generation for the following compo-
nents:

• Algebraic Constraint (see page 359)
• Brushless DC Machine (see page 374)
• Electrical Algebraic Component (see page 440)
• Rotational Algebraic Component (see page 632)
• Switched Reluctance Machine (see page 702)
• Translational Algebraic Component (see page 765)
• Variable Capacitor (see page 800)
• Variable Inductor (see page 806)
• Variable Resistor (see page 815)
• Variable Resistor with Constant Parallel Capacitor (see page 816)
• Variable Resistor with Constant Series Inductor (see page 817)
• Variable Resistor with Variable Parallel Capacitor (see page 818)
• Variable Resistor with Variable Series Inductor (see page 820)

PLECS also does not support code generation for models that contain algebraic
loops.
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Code Generation with PLECS Standalone

PLECS Standalone produces C code in an embedded format, generating entry
point functions that must be called from a main application. The following func-
tions are generated:

void model_initialize(double time)
This function should be called once at the beginning of a simulation to ini-
tialize the internal data structures and the start value of the global clock for
components that depend on the absolute time.

void model_step()
void model_step(int task_id)

This function should be called at every simulation step to advance the
model by one step. The second form is used if the multi-tasking mode is en-
abled (see “Scheduling” on page 288) and the model has more than one task.

void model_output()
void model_output(int task_id)

This function calculates the outputs of the current simulation step. It
should be called at every simulation step before the model_update function.
The second form is used if the multi-tasking mode is enabled.

void model_update()
void model_update(int task_id)

This function updates the internal states of the current simulation step. It
should be called at every simulation step after the model_output function.
The second form is used if the multi-tasking mode is enabled.

void model_terminate()
This function should be called at the end of a simulation to release re-
sources that were acquired at the beginning of or during a simulation.

The prefix model is replaced by a model-specific string.

The model_output and model_update functions are only generated if the corre-
sponding option is set in the target specific settings (see “Target” on page 288).
In this case, the model_step function is not generated.

If a runtime error occurs during the execution of any of the three functions
above, the variable const char * model_errorStatus points to a string with
the error message. It is initialized with NULL.
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Generating Code

To generate code, choose Coder options... from the Coder menu. This menu
only appears if you have a license for the PLECS Coder.

The left hand side of the dialog window shows a tree view of the model and the
code-generation subsystem that it contains. Intermediate subsystems that have
not been enabled for code generation appear as disabled entries that cannot be
selected.

To enable a subsystem for code generation, select the subsystem, then choose
Execution settings... from the Subsystem submenu of the Edit menu or the
context menu. In the Subsystem Settings dialog check the option Enable code
generation. Note that it is not possible to enable code generation for a subsys-
tem that is contained by or that itself contains other subsystems that enable
code generation. Checking this option implicitly also checks the option Treat
as atomic unit and unchecks the option Minimize occurrence of algebraic
loops. For more information on these options see “Virtual and Atomic Subsys-
tems” (on page 695).
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The right hand side of the dialog window shows a tabbed dialog with the code
generation options for the system that is selected in the tree view. To generate
code for the currently selected system, click on the Build button at the bottom
of the right hand side.

Code generation can also be initiated in an Octave simulation script or via the
RPC interface using the commands

plecs('codegen', 'path', optStruct, 'outputDir')

or

plecs.codegen('path', optStruct, 'outputDir')

respectively, where path is a model name or a subsystem path. The parameters
optStruct and outputDir are optional.

If optStruct is provided, it is expected to be a struct as described in “Scripted
Simulation and Analysis Options” (on page 268). This enables you e.g. to gen-
erate code for different parameter values without having to modify the model
file.

If outputDir is provided, the generated files will be placed in this folder instead
of the folder that is specified in the model.

General

Discretization step size This parameter specifies the base sample time of
the generated code and is used to discretize the physical model equations (see
“Physical Model Discretization” on page 35) and continuous state variables of
control blocks.

Discretization method This parameter specifies the algorithm used to dis-
cretize the physical model equations (see “Physical Model Discretization” on
page 35).

Floating point format This parameter specifies the default data type (float
or double) that is used for floating point variables in the generated code.
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Usage of absolute time This setting allows you to specify the diagnostic ac-
tion to be taken if PLECS generates code for a component that depends on the
absolute time. In order to minimize round-off errors, PLECS generates code to
calculate the absolute time using a signed 64-bit integer tick counter. If a simu-
lation runs for an infinite time, this tick counter will eventually reach its maxi-
mum value, where it is halted to avoid problems that might occur if the counter
was wrapped to the (negative) minimum value, such as a Step block (see page
694) resetting to its initial value. To put things into perspective, assuming a
step size of 1µs this would occur after 292 271 years.
Depending on this setting, PLECS will either ignore this condition or it will is-
sue a warning or error message that indicates the components that use the ab-
solute time.
Base name This parameter allows you to specify a custom prefix used to
name the generated files and the exported symbols such as the interface func-
tions or the input, output and parameter structs. By default, i.e. if you clear
this field, the base name is derived from the model or subsystem name.
Output directory This parameter allows you to specify, where the generated
files are stored. This can be an absolute path or a relative path with respect to
the location of the model file. The default path is a directory model_codegen
next to the model file.

Parameter Inlining

These two settings specify how PLECS handles tunable parameters in the gen-
erated code.
Default behavior This setting specifies whether PLECS inlines the parame-
ter values as numeric constants directly into the code (Inline parameter val-
ues) or generates a data structure from which the values are read (Keep param-
eters tunable).
Inlining parameter values reduces the code size and increases the execution
speed. However, changing an inlined parameter value requires regenerating
and recompiling the code. On the other hand, the values of tunable parameters
can be changed at execution time without recompiling the code.
Exceptions For the components listed here, the opposite of the default behav-
ior applies. If the default behavior is to inline all parameter values, the com-
ponents listed here will keep their parameters tunable and vice versa. To add
components to this list, simply drag them from the schematic into the list. Use
the Remove button to remove components from the list. To view the selected
component in the schematic editor, click the Show component button.

287



11 Code Generation

Note Physical component parameters that affect the physical model equa-
tions, such as resistances or inductances, cannot be kept tunable, because
changing such parameters in general requires a recalculation of the complete
equation system. You can, however, keep the parameters of source blocks tun-
able.

Target

On this tab you can select a code generation target and configure target-specific
settings. By default, only the Generic target is available. For information on
how to install additional code generation targets, see “Coder Configuration” (on
page 127).

The Generic target has the following settings.

Generate separate output and update functions If you choose this op-
tion, the model_step function is replaced by the two functions model_output
and model_update. Choose this option when you need access to the outputs as
early as possible during task execution (e.g. to transfer the values to an analog
or digital output, update a logger, start a DMA transfer, etc.).

Scheduling

This tab is enabled only if you have selected a target that supports multi-
tasking.

Tasking mode This parameter allows you to choose between the single-
tasking and multi-tasking modes.

Task configuration If you choose the multi-tasking mode, the dialog will
show a table that lets you define a set of tasks. A task has a Task name and
a Sample time that must be an integer multiple of the base sample time. The
value 0 is replaced with the base sample time itself. If the selected target sup-
ports multi-core processing, a task is also associated with a Core. If the se-
lected target has multiple processors, a task is also associated with a CPU. The
radio buttons in the Default column specify the default task (see below).

Each task must have a unique name, and the core/sample time pairs must also
be unique. Note that the task set must comprise a base task that is associated
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with the base sample time and core 0 (if applicable). For this reason, these
columns in the first row are locked.

To assign a block or a group of blocks to a task, copy a Task Frame (see page
726) into the schematic, open the Task Frame dialog to choose the desired task,
and drag the frame around the blocks. Blocks that are not enclosed by a Task
Frame are scheduled in the default task.

Note that blocks do not need to have the same sample time as the task that
they are assigned to; the block sample time can be continuous or an integer
multiple of the task sample time.

Thermal model task In multi-tasking mode you can choose to execute all
thermal model calculations in a dedicated task, typically on a separate core
with a slower sample time in order to allow for the longer computation time for
the calculation of switch losses. This asynchronous execution mode is supported
only for power modules in “Sub-cycle average” configuration.

To configure a dedicated thermal model task, select its name in the combo box.
The default setting, use native task, means that a thermal model is executed
according to the Task Frame configuration synchronously with an associated
electrical model.

External Mode

This tab is enabled only if you have selected a target that supports external
mode operation and if the corresponding target setting is enabled. External
mode operation enables you to

• Capture data on a target device and show them in Scope (see page 664),
XY Plot (see page 834) and Display (see page 429) blocks in the model on the
host computer.

• Change values of tunable parameters (see “Parameter Inlining” on page 287)
in the model on the host computer and upload the changed values to an ap-
plication running on a target device.

Task Transitions in Multi-Tasking Mode

If a block in one task receives one or more input signals from a block in another
task, PLECS automatically inserts code to ensure that the signal data is trans-
ferred in a safe manner.
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Task Transitions on the Same Core

If the source task is faster than the destination task and the sample time of the
destination task is an integer multiple of the sample time of the source task (i.e.
if the destination task is executed at instants at which the source task is also
executed), PLECS inserts code equivalent to a Zero Order Hold (see page 837)
that operates with the slower sample time.

If the source task is slower than the destination task and the sample time of
the source task is an integer multiple of the sample time of the destination task
(i.e. if the source task is executed at instants at which the destination task is
also executed), PLECS inserts code equivalent to a Delay (see page 410) that
operates with the slower sample time.

In all other cases, PLECS uses a double buffer with a semaphore to transfer the
data.

The insertion of a Zero Order Hold or a Delay ensures that data is always ex-
changed in a deterministic manner. The drawback is that it introduces latency.
If this is not desired, you can insert a Task Transition block (see page 727) in
front of the receiving block inside the destination task. This causes PLECS to
transfer the data using a double buffer instead.

Task Transitions Between Different Cores

For task transitions between different cores, the write operation in the source
task can occur simultaneously with the read operation in the destination task.
PLECS uses a double buffer with two semaphores to guarantee that simultane-
ous read and write operations never access the same buffer.

Task Transitions Between Different CPUs

For task transitions between different CPUs, PLECS delegates the data trans-
fer to external functions that must be provided by the target framework.

Simulating a Subsystem in CodeGen Mode

Enabling a subsystem for code generation also enables the Simulation Mode
parameter in the Execution Settings dialog (see the Subsystem block on page
695). When this parameter is set to Normal, which is the default, the subsys-
tem is simulated like a normal atomic subsystem. When the parameter is set to
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CodeGen, the generated code is compiled and linked to PLECS to be executed
instead of the subsystem during a simulation.

In connection with the “Traces” feature of the scopes (see “Adding Traces” on
page 104), this allows you to easily verify the fidelity of the generated code
against a normal simulation.
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Code Generation with PLECS Blockset

Standalone Code Generation

PLECS Blockset can generate C code in the same format as PLECS Standalone,
and you can choose to generate code for a complete Circuit block or for an indi-
vidual subsystem. To generate code, choose Coder options... from the Coder
menu. This menu only appears if you have a license for the PLECS Coder. For
details on the coder options dialog please refer to the previous section “Code
Generation with PLECS Standalone” (on page 284).

Code generation can also be initiated via the MATLAB commands

plecs('codegen', 'path')
plecs('codegen', 'path', 'outputDir')

If outputDir is provided, the generated files will be placed in this folder instead
of the folder that is specified in the model.

Integration with Simulink Coder

In addition, PLECS Blockset fully integrates with Simulink Coder (formerly
Real-Time Workshop) to generate C code for your simulation model. Whenever
you start a build process from within Simulink, PLECS automatically gener-
ates the code for a circuit block and inserts it at the appropriate places into the
code generated by Simulink Coder.

Note Scopes that are placed in PLECS schematics are not updated during
a simulation using code generation. To view the simulation results, all scopes
must be placed in the Simulink model.

Simulink Coder Options

The code generation options for the Simulink Coder are configured on the
Simulink Coder pane of the PLECS simulation parameters.
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Code generation target This parameter specifies the code generation target
(see “Code Generation Targets” on page 293). The default, auto, means that
PLECS selects the target depending on the Simulink Coder target.

Inline circuit parameters for RSim target Specifies for the RSim target
whether component parameters should be evaluated at compile time and in-
lined into the code (on) or evaluated at run time (off). See also “Tunable Cir-
cuit Parameters in Rapid Simulations” (on page 295).

Generate license-free code (requires PLECS Coder license) If this op-
tion is checked, PLECS will attempt to check-out a PLECS Coder license at
build time and, if successful, will generate code for the RSim target that will
run without requiring a PLECS license. Otherwise, the generated executable
will require a PLECS license at run time.

Show code generation progress If this option is checked, PLECS opens
a dialog window during code generation that shows the progress of the code
generation process. You can abort the process by clicking the Cancel button
or closing the dialog window.

Code Generation Targets

PLECS can generate code for two different Simulink Coder targets: the Rapid
Simulation target (or RSim target) and the Real-Time target. These two targets
are described in detail in the following two sections. The table below highlights
the differences between the targets.

Comparison of Code Generation Targets

RSim Target Real-Time Target

Purpose Rapid, non-real-time simu-
lations.

Real-time simulations.

Technique A compressed description
of the circuit schematic is
embedded in the code and
interpreted at run time.

Signal and state-space
equations are inlined as
ANSI C code.

Limitations none Limited support for natu-
rally commutated devices
and non-linear components.
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Comparison of Code Generation Targets (contd.)

RSim Target Real-Time Target

Inlining Parameters may be de-
clared tunable, so that they
are evaluated at run time.

All parameters are inlined,
i.e. evaluated at compile
time and embedded into the
generated code.

Deployment Requires distribution of the
PLECS RSim module.

Generated code does not
have external dependen-
cies.

Licensing If a PLECS Coder license
is available at build time,
the generated code will run
without a license. Other-
wise, a PLECS license is
required at run time.

Requires a PLECS Coder
license at build time.

By default, PLECS automatically selects the appropriate target depending
on the target settings of Simulink Coder. To overrule this selection, open the
PLECS simulation parameters, and on the Advanced pane change the setting
Target to either RSim or RealTime.

Real-Time Target

The Real-Time Target is selected by default when you generate code using any
of the real-time targets of Simulink Coder. Code generation for the Real-Time
target requires a separate license for the PLECS Coder for PLECS Blockset.

For a detailed description of the code generation process for physical systems
and its current limitations see “Code Generation for Physical Systems” (on page
279).

Rapid Simulation Target

The RSim target is selected by default when you run a simulation using
Simulink’s Rapid Accelerator mode or when you generate an executable using
the RSim target or the S-Function target of Simulink Coder. The resulting code
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links against the RSim module of PLECS, a shared library which is part of the
standard installation.

Deploying Rapid Simulation Executables

To deploy the generated executable you need to copy the appropriate shared
library file onto the target computer. The following table lists the library files
for the supported platforms.

Library Files for Rapid Simulations

Platform Library File

Windows 64-bit plecs\bin\win64\plecsrsim.dll

Mac Intel 64-bit plecs/bin/maci64/libplecsrsim.dylib

Linux 64-bit plecs/bin/glnxa64/libplecsrsim.so

The library file must be copied into the same directory as the executable. Alter-
natively, you can define the appropriate environment variable for your target
computer such that it includes the directory where you have installed the li-
brary file.

Licensing Protocols for the PLECS RSim Module

Depending on the build settings the RSim module may check out a PLECS
license for the duration of execution. It uses the environment variable
PLEXIM_LICENSE_FILE to locate the license file. If the module is unable to check
out a PLECS license, it issues an error message and stops the simulation.

Tunable Circuit Parameters in Rapid Simulations

By default, PLECS evaluates the parameters of all circuit components at com-
pile time and inlines them into the circuit description. However, for certain ap-
plications – such as rapid simulations on different parameter sets or parame-
terized S-Functions – it is desirable that the parameters be evaluated at sim-
ulation start instead. This can be achieved by declaring the circuit parameters
tunable.
To declare circuit parameters tunable,
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1 Mask the PLECS Circuit block and define all parameters that you wish to
keep tunable as mask variables. Mask variables can either be mask param-
eters (that appear in the parameter dialog) or variables defined in the mask
initialization commands. For more information see “Customizing the Circuit
Block” (on page 49).

2 On the Advanced pane of the PLECS simulation parameters, uncheck the
option Inline circuit parameters for RSim target.

3 Include the variable names in the list of tunable model parameters. Please
see the Simulink Coder User’s Guide for details.

Limitations on Tunable Circuit Parameters If you declare circuit param-
eters tunable, the RSim module uses its own parser to evaluate parameter ex-
pressions at simulation start; it currently cannot handle mask initialization
commands. You will receive runtime errors if your circuit contains masked sub-
systems using mask initialization commands, or if a parameter expression con-
tains a MATLAB function call.

Other limitations apply due to the way the Simulink Coder handles tunable
parameters:

• Circuit parameters must be double-precision, 2-dimensional, non-sparse ar-
rays.

• The first four characters of the parameter names must be unique.
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FMU Export

As a separately licensed feature, PLECS can export an atomic subsystem to a
Functional Mockup Unit (FMU) according to the FMI Model Exchange stan-
dard in version 2.0. This allows you to integrate PLECS models into third-party
simulation tools. The exported FMU can be used on a target computer with-
out the need to install PLECS, and no license is required to run the FMU. Sup-
ported target platforms are the same as those supported by PLECS itself, i.e.
Windows 64-bit, Linux 64-bit and macOS.

The exported FMU consists of an encrypted PLECS model file and target-
specific shared libraries that parse and execute the PLECS model at runtime.
For technical reasons the subsystem must be discretized for the export so that
the FMU is executed with a fixed sample time. It is recommended that you test
the proper operation of the discretized subsystem by running a simulation with
the Discrete solver in PLECS Standalone (see “PLECS Standalone Parame-
ters” on page 111) or the Discrete state-space circuit model type in PLECS
Blockset (see “PLECS Blockset Parameters” on page 118) prior to the export.

Exporting an FMU

To export an atomic subsystem to an FMU, select the Subsystem block, then
choose Export FMU... from the Subsystem submenu of the Edit menu or the
block’s context menu. This will open the FMU Export dialog that allows you to
configure the FMU as described below. When you click on Export, the FMU is
created.

If the subsystem has a mask (see “Masking Subsystems” on page 68), PLECS
automatically exports the mask description as the FMU description and the
mask parameters as FMU parameters. Note that thermal description parame-
ters are not supported by the FMI standard and are therefore ignored.
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General

Sample time This parameter specifies the sample time used to discretize the
exported subsystem.

Target platform(s) These checkboxes let you choose the binary platform(s)
on which you intend to run the exported FMU. PLECS will embed the corre-
sponding shared libraries into the FMU.

Before you can export an FMU for the first time, you need to install the shared
library files on your computer. This is indicated by blue arrows next to the
checkbox items as shown below. When you click on any of them, a dialog opens
that lets you download and install the required package automatically.

Terminal Order

On this page you can configure the order in which the input and output termi-
nals of the subsystem appear in the exported FMU.
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Documentation

Icon file This parameter allows you to specify a PNG image file that is in-
cluded as a model icon in the exported FMU.

Documentation This parameter allows you to provide documentation that is
included in the exported FMU. You can choose to include a single HTML file or
a folder with HTML and resource files.

Limitations

Discrete-Variable Sample Times As described at the beginning of this
chapter, PLECS discretizes the model when exporting to an FMU. As a conse-
quence, the model cannot contain components that have a variable sample time.

Thermal Description Parameters Thermal description parameters are in-
lined and cannot be modified in the exported FMU.

Masked Subsystems The shared FMU libraries contain a basic MATLAB
parser for interpreting simple initialization commands of masked subsystems
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(see “Initialization Commands” on page 80). This parser supports only a lim-
ited subset of the MATLAB language. As a consequence, the following library
components currently cannot be used in an exported FMU:

• Diode with Reverse Recovery (see page 413)
• Non-Excited Synchronous Machine (see page 579)
• Synchronous Reluctance Machine (see page 722)
• Thyristor with Reverse Recovery (see page 742)
• Transmission Line (3ph) (see page 783)
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Diff Tool

The Diff tool can be used to compare two PLECS models or two subsystems of
PLECS models. The result of a Diff is a side-by-side comparison of the two mod-
els showing all the differences between them. Depending on the kind of change,
a suitable view is used, e.g. a schematic to show inserted or deleted components
or a parameter dialog to show changed parameter values. The Diff browser can
be used to navigate through the differences. A “relevance” value for each differ-
ence helps you to identify the most important changes.

This chapter is divided into four sections. The first section describes how to se-
lect two models or subsystems and compute a Diff for them. The second sec-
tion gives an overview on how the result of the Diff is presented to the user. The
third section explains the algorithms PLECS uses to compute the Diff. Finally,
the fourth section lists the limitations of the Diff tool.

How to Compute a Diff

Computing a Diff in PLECS Standalone

The Diff tool can compare either two complete PLECS models or two subsys-
tems contained in one or two PLECS models. To compute a Diff, choose the op-
tion Compare in the File menu. This opens the Diff dialog.

This dialog has the two rows “Before” and “After” to specify the two entities that
should be compared. You can use drag&drop to specify a model or a subsystem
for comparison. Each row in the Diff dialog contains the following fields:

Model file
This field is used to specify the path of the model file. Depending on the
models that are currently open in PLECS, this field is already filled with
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Standalone Diff dialog

a reasonable suggestion. You can also use drag&drop or the Open file
browser button (...) to choose a file.

Subsystem path
This field can be used to specify a subsystem for the comparison. If you
want to compare subsystems you have to specify a subsystem for both the
“before” and “after” row. You cannot compare a model with a subsystem.
The subsystem path should also contain the name of the model, which can
be abbreviated by a dot (.). If you use only the model name or a dot or if you
leave this field empty, the whole model will be compared. Depending on the
subsystems that are currently selected in PLECS, this field is already filled
with a reasonable suggestion. You can also drag&drop a subsystem from a
schematic window.

State
This is a drop-down list that can specify either one of the values File state
or Editor state. If you choose File state, the state the model has in the
model file is used for comparison. If you choose Editor state, the unsaved
changes of an open model are used for comparison. This can be useful to
review changes before saving a model.

Differences are defined as editing steps from the “before” model to the “after”
model. A component present in the “before” model but missing in the “after”
model will be displayed as a deletion. If you decide that you would like the dif-
ferences to be presented the other way around, use the Swap button to swap all
fields in the “before” and “after” row.

Once you have filled out all fields, press the Compare button to start the Diff
computation. A progress bar will show the current state of the Diff computa-
tion. If you want to abort the Diff computation, press Cancel. Once the Diff
computation has finished, the Diff result window will show the result.
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Computing a Diff in PLECS Blockset

The Diff tool can compare either two complete PLECS circuits contained in one
or two Simulink models or two subsystems contained in one or two PLECS cir-
cuits. To compute a Diff, choose the option Compare in the File menu. This
opens the Diff dialog.

Blockset Diff dialog

This dialog has the two rows “Before” and “After” to specify the two entities that
should be compared. You can use drag&drop to specify a model or a subsystem
for comparison. Each row in the Diff dialog contains the following fields:

Model file
This field is used to specify the path of the Simulink model file. Depending
on the models that are currently open, this field is already filled with a rea-
sonable suggestion. You can also use drag&drop or the Open file browser
button (...) to choose a file. Valid model file extensions are mdl and slx.

Circuit path
This field is used to specify the path of the PLECS Circuit within the
Simulink model. It should start with the Simulink model name and end
with the PLECS Circuit name. Depending on the models that are currently
open, this field is already filled with a reasonable suggestion.

Subsystem path
This field can be used to specify a subsystem for the comparison. If you
want to compare subsystems you have to specify a subsystem for both the
“before” and “after” row. You cannot compare a circuit with a subsystem.
The subsystem path should also contain the name of the circuit, which can
be abbreviated by a dot (.). If you use only the circuit name or a dot or if you
leave this field empty, the whole circuit will be compared. Depending on the
subsystems that are currently selected in PLECS, this field is already filled
with a reasonable suggestion. You can also drag&drop a subsystem from a
schematic window.
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State
This is a drop-down list that can specify either one of the values File state
or Editor state. If you choose File state, the state the circuit has in the
model file is used for comparison. If you choose Editor state, the unsaved
changes of an open model are used for comparison. This can be useful to
review changes before saving a model.

Differences are defined as editing steps from the “before” model to the “after”
model. A component present in the “before” circuit but missing in the “after”
circuit will be displayed as a deletion. If you decide that you would like the dif-
ferences to be presented the other way around, use the Swap button to swap all
fields in the “before” and “after” row.

Once you have filled out all fields, press the Compare button to start the Diff
computation. A progress bar will show the current state of the Diff computa-
tion. If you want to abort the Diff computation, press Cancel. Once the Diff
computation has finished, the Diff result window will show the result.

How to Interpret the Results

The result of computing a Diff is shown in the Diff result window. This window
contains a Diff browser and two views, one for the “before” model and one for
the “after” model.

Diff result window

The Diff Browser

The Diff browser can be used to navigate through the differences between the
two models. It is similar to the Circuit Browser shown in schematic windows
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(see “Circuit Browser” on page 89). However, there are three important differ-
ences:

1 The Diff browser shows not only components but also all other kinds of items
stored in a model, e.g. parameters, properties like the positions of compo-
nents, analyses and simulation scripts

2 The Diff browser only shows the items that actually changed

3 The Diff browser merges both models into one tree, i.e. an item in the tree
represents the corresponding item in both models (if it exists)

There are cases where an item is located in different schematics in the “before”
and “after” models. For example, if a resistor is in the root schematic in the “be-
fore” model and within a subsystem in the “after” model, it will appear twice in
the Diff browser.

The Diff browser shows the three columns Name, Type and Relevance.

Name

This column shows the name of the corresponding item. The hierarchical struc-
ture of the model is shown as a tree. Use the little arrows to navigate into
nested items. The colored icons next to the item names illustrate the kind of
change:

A red icon means that the corresponding item was deleted from the “be-
fore” model

A green icon means that the corresponding item was inserted into the “af-
ter” model

A blue icon means that the corresponding item was modified

For renamed items, both the “before” and “after” names are shown, with an ar-
row (→) between them.

Type

This column shows the type of the corresponding item. The type is also illus-
trated by the icon. There are the following types:

PLECS Circuit

Subsystem

Component (other than a Subsystem)
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Connection

Annotation

Terminal

Parameter

Setting

Component assertion

Scope plot

XY-plot axis

Fourier plot

Probe (entry for a component in a Probe block or a mask probe)

Mask probe (entry in the list of probes for a masked subsystem)

Simulink probe (entry in a Simulink Probe block)

State machine state (includes entry points and junctions)

State machine transition

State machine annotation

State machine parameter

Analysis

Simulation script

Property (of an item of any type)

This list is exhaustive, i.e. every data item in a model has one of the above
types.

Note The item types in the Type column of the Diff browser are distinct from
the component types shown in the Type column of the Circuit browser.

306



How to Interpret the Results

Relevance

This column shows a “relevance” for each item shown in the Diff browser. The
relevance gives an estimation for the importance of a change. It can have the
following values:
Simulation

The difference may have an impact on the result of a simulation. Example:
changing a component parameter value.

Representation
The difference does not influence the simulation, but how a model is dis-
played in the GUI. Example: changing the position of a component in the
schematic.

Model file
The difference does not influence the simulation and is not directly visible
in the GUI either, but it is visible in the model file. Example: changing the
PLECS version in which the model is saved.

Tool Buttons

The Diff browser also shows the following tool buttons:

Previous View

Use this button to return to the previous item that was shown in the views.

Next View

Use this button to go to the next item in the list of visited items.

Filter Options

Use this button to filter items according to their relevance (see “Relevance” on
page 307).

Refresh

Use this button to recompute the Diff after one of the compared original models
changed.
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The Diff Views

To the right of the Diff browser, there are two views that show the currently
selected item in the appropriate context, e.g., a changed component is shown in
the parent schematic, a changed parameter is shown in the parameter dialog.
Each view shows the path of the currently visible item at the top. By clicking on
an element of the path, you can navigate to the corresponding item.
By default, the left view shows the “before” model and the right view shows the
“after” model. You can swap the two views in the General tab of the PLECS
preferences dialog (see section “Configuring PLECS” on page 124). Note that
swapping the views only changes their location in the window and has no influ-
ence on the roles of the “before” and “after” models.
As in the Diff browser, items deleted from the “before” model are marked in red,
items inserted into the “after” model are marked in green and modified items
are marked in blue. A spotlight is used to facilitate finding the changed item.
You can navigate through the models as in a normal Schematic window. How-
ever, editing is disabled, because the Diff result is only valid for the particular
state the models were in when you pressed the Compare button.

How Diff Works

Classical Diff algorithms (like Miller & Myers, 1985) operate on linear lists.
This works well for continuous text but cannot account for the hierarchical
structure of tree-like data. A PLECS model is a collection of nested linear
and hierarchical data. To compute a useful Diff between two PLECS models,
we therefore employ an algorithm that uses a linear Diff algorithm (Miller
& Myers, 1985) for linear structures and a hierarchical Diff algorithm (Zhang
& Shasha, 1989 and Paassen, 2018) for hierarchical structures and applies
them recursively to nested data as appropriate. For example, the hierarchi-
cal algorithm is used to compare the trees of subsystems and components, and
within a C-Script block, the linear algorithm is used to compare each C code
snippet.
The result of the algorithm is a mapping of items in the “before” model to items
in the “after” model. Items that are mapped to each other are considered to be
“the same” item. Items that are in the mapping and identical are reported to be
unchanged. Items that are in the mapping and not identical are reported to be
modified. Items that are not in the mapping but present in the “before” model
are reported to be deleted. Items that are not in the mapping but present in the
“after” model are reported to be inserted.
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Limitations

Model Conversion

PLECS computes Diffs based on the internal representation of a model rather
than the text contents of a model file. If a model is not open yet, it will be
loaded into the internal representation before the comparison. If the model file
was saved with a different version of PLECS, this internal representation may
differ from the model file due to differences between the PLECS versions. This
means that the Diff shown in PLECS may not contain certain differences that
are present in the model files. PLECS shows a warning if the versions of the
compared models do not match.

Non-Intuitive Results

The result shown in the Diff result window may sometimes not correspond to
what you would consider the “correct” result. There are mainly two reasons for
this:

1 While there are many ways to edit a model, the Diff algorithm (see “How Diff
Works” on page 308) detects only three distinct edit operations: deletions,
insertions and modifications. Also, the order of the items and their parent-
child relationships within the models must be preserved in order for an item
to be considered the same item in the “before” and “after” models.

2 The ordering of the items in the model is not directly visible in the GUI. This
corresponds to the order in which the items are stored in the model file and
has nothing to do with the coordinates of a component within a schematic.
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13 Diff Tool

An example of a non-intuitive result may be the following: Consider a model
containing only a resistor and a diode in the root schematic, in this order. Now
the user adds a subsystem and moves the diode into it. As expected, the Diff
result will be an inserted subsystem in the “after” model and a modified diode,
located in the root schematic in the “before” model and within the subsystem
in the “after” model. However, if the user, instead of moving the diode into
the subsystem, moves the resistor into the subsystem, the Diff result will be a
deleted resistor in the “before” model and an inserted subsystem and inserted
nested resistor in the “after” model.

The reason for the second, unexpected result is that inserting a subsystem and
moving the resistor into it changes the order of the components. Because the
subsystem is added at the end of the list of components in the schematic, and
the resistor is removed from the beginning of the same list, moving the resistor
into the subsystem changes its position relative to the diode. The resistor can
therefore not be part of the mapping and is detected as deleted and inserted
instead of just modified.

Though situations like the one described above exist, the result that the Diff
algorithm produces is always correct in the sense that it represents a minimal
valid sequence of deletions, insertions and modifications that lead from the “be-
fore” model to the “after” model.
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14

Components by Category

This chapter lists the blocks of the Component library by category.

System

Configurable Subsystem Provide subsystem with exchangeable implementa-
tions

Display Display signal values in the schematic

Dynamic Signal Selector Select or reorder elements from vectorized signal
depending on control signal

Enable Control execution of an atomic subsystem

From File Read time and signal values from file

Pause / Stop Pause or stop the simulation

Scope Display simulation results versus time

Signal Demultiplexer Split vectorized signal

Signal From Reference signal from Signal Goto block by name

Signal Goto Make signal available by name

Signal Inport Add signal input connector to subsystem

Signal Multiplexer Combine several signals into vectorized signal

Signal Outport Add signal output connector to subsystem

Signal Selector Select or reorder elements from vectorized signal



14 Components by Category

Subsystem Create functional entity in hierarchical simulation
model

Switch Loss Calculator Calculate the average sum of the switch losses of
all probed components over the specified averaging
period

Task Frame Associate the enclosed components with a task in a
multi-tasking environment

Task Transition Transfer data between tasks using a double buffer

To File Write time and signal values to file

Trigger Control execution of an atomic subsystem

XY Plot Display correlation between two signals

Assertions

Assert Dynamic Lower Limit Check whether a signal stays above another signal

Assert Dynamic Range Check whether a signal stays between two other
signals

Assert Dynamic Upper Limit Check whether a signal stays below another signal

Assertion Check whether a condition is true

Assert Lower Limit Check whether a signal stays above a constant

Assert Range Check whether a signal stays within a constant
range

Assert Upper Limit Check whether a signal stays below a constant

Control

Sources

Clock Provide current simulation time

Constant Generate constant signal
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Control

Initial Condition Output specified initial value in the first simulation
step

Pulse Generator Generate periodic rectangular pulses

Ramp Generate constantly rising or falling signal

Sine Wave Generate time-based sine wave with optional bias

Step Generate constant signal with instantaneous step
change

Triangular Wave Generator Generate periodic triangular or sawtooth waveform

White Noise Generate normally distributed random numbers

Random Numbers Generate uniformly distributed random numbers

Math

Abs Calculate absolute value of input signal

Algebraic Constraint Enforce an algebraic constraint

Data Type Cast the input signal to the specified data type

Gain Multiply input signal by constant

Math Function Apply specified mathematical function

Minimum / Maximum Output input signal with highest resp. lowest value

Offset Add constant to input signal

Product Multiply and divide scalar or vectorized input sig-
nals

Rounding Round floating point signal to integer values

Signum Provide sign of input signal

Sum Add and subtract input signals

Trigonometric Function Apply specified trigonometric function

Continuous
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14 Components by Category

Continuous PID Controller Implementation of a continuous-time controller (P,
I, PI, PD or PID)

Integrator Integrate input signal with respect to time

PLL (Single-Phase) Implementation of a single phase PLL

PLL (Three-Phase) Implementation of a three phase PLL

State Space Implement linear time-invariant system as state-
space model

Transfer Function Model linear time-invariant system as transfer
function

Delays

Memory Provide input signal from previous major time step

Pulse Delay Delay discrete-value input signal by fixed time

Transport Delay Delay continuous input signal by fixed time

Turn-on Delay Delay rising flank of input pulses by fixed dead
time

Discontinuous

Comparator Compare two input signals with minimal hysteresis

Dead Zone Output zero while input signal is within dead zone
limits

Hit Crossing Detect when signal reaches or crosses given value

Manual Signal Switch Manually select one of two input signals

Multiport Signal Switch Select one of multiple input signals depending on
control signal

Quantizer Apply uniform quantization to input signal

Rate Limiter Limit rising and falling rate of change
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Control

Relay Toggle between on- and off-state with configurable
threshold

Saturation Limit input signal to upper and/or lower value

Signal Switch Select one of two input signals depending on control
signal

Discrete

Delay Delay input signal by given number of samples

Discrete Integrator Calculate discrete integral of input signal

Discrete Mean Value Calculate running mean value of input signal

Discrete PID Controller Implementation of a discrete-time controller (P, I,
PI, PD or PID)

Discrete State Space Implement discrete time-invariant system as state-
space model

Discrete Transfer Function Model discrete system as transfer function

Zero-Order Hold Sample and hold input signal periodically

Filters

Moving Average Continuously average input signal over specified
time period

Periodic Average Periodically average input signal over specified
time

Periodic Impulse Average Periodically average Dirac impulses over specified
time

Total Harmonic Distortion Calculate total harmonic distortion (THD) of input
signal

Fourier Transform Perform Fourier transform on input signal

RMS Value Calculate root mean square (RMS) value of input
signal
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Functions & Tables

1D Look-Up Table Compute piece-wise linear function of one input
signal

2D Look-Up Table Compute piece-wise linear function of two input
signals

3D Look-Up Table Compute piece-wise linear function of three input
signals

C-Script Execute custom C code

DLL Interface with externally generated dynamic-link
library

Fourier Series Synthesize periodic output signal from Fourier
coefficients

Function Apply arbitrary arithmetic expression to scalar or
vectorized input signal

FMU Use a model stored in an FMU model

Logical

Combinatorial Logic Use binary input signals to select one row from
truth table

Compare to Constant Compare input signal to constant threshold

D Flip-flop Implement edge-triggered flip-flop

Edge Detection Detect edges of pulse signal in given direction

JK Flip-flop Implement edge-triggered JK flip-flop

Logical Operator Combine input signals logically

Monoflop Generate pulse of specified width when triggered

Relational Operator Compare two input signals

SR Flip-flop Implement set-reset flip-flop
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Control

Modulators

2-Pulse Generator Generate firing pulses for H-bridge thyristor recti-
fier

3-Phase Index-Based Modu-
lation

Generate the modulation index for a three-phase
reference voltage

3-Phase Overmodulation Extend linear range of modulation index for 3-
phase inverters

6-Pulse Generator Generate firing pulses for 3-phase thyristor rectifier

Blanking Time Generate commutation delay for 2-level inverter
bridges

Blanking Time (3-Level) Generate commutation delay for 3-level inverter
bridges

Peak Current Controller Implement peak current mode control

Sawtooth PWM Generate PWM signal using sawtooth carrier

Sawtooth PWM (3-Level) Generate 3-level PWM signal using sawtooth carri-
ers

Space Vector PWM Generate PWM signals for 3-phase inverter using
space-vector modulation

Space Vector PWM (3-Level) Generate PWM signals for 3-phase NPC inverter
using space-vector modulation

Symmetrical PWM Generate PWM signal using symmetrical triangu-
lar carrier

Symmetrical PWM (3-Level) Generate 3-level PWM signal using symmetrical
triangular carriers

Variable Frequency PWM Generate PWM signals with variable frequency

Variable Phase PWM Generate PWM signals with variable phase shift

Transformations

Polar to Rectangular Convert polar coordinates to Cartesian coordinates
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Rectangular to Polar Convert Cartesian coordinates to polar coordinates

Transformation 3ph->RRF Transform 3-phase signal to rotating reference
frame

Transformation 3ph->SRF Transform 3-phase signal to stationary reference
frame

Transformation RRF->3ph Transform vector in rotating reference frame into
3-phase signal

Transformation RRF->SRF Transform vector from rotating to stationary refer-
ence frame

Transformation SRF->3ph Transform vector in stationary reference frame into
3-phase signal

Transformation SRF->RRF Transform vector from stationary to rotating refer-
ence frame

State Machine

State Machine Model a state machine

Small Signal Analysis

(PLECS Standalone only)

Small Signal Gain Measure loop gain of closed control loop using
small-signal analysis

Small Signal Perturbation Generate perturbation signal for small-signal anal-
ysis

Small Signal Response Measure system response for small-signal analysis

Electrical

Connectivity
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Electrical

Electrical Ground Connect to common electrical ground

Electrical Label Connect electrical potentials by name

Electrical Port Add electrical connector to subsystem

Wire Multiplexer Bundle several wires into bus

Wire Selector Select or reorder elements from wire bus

Sources

Current Source (Controlled) Generate variable current

Current Source AC Generate sinusoidal current

Current Source DC Generate constant current

Voltage Source (Controlled) Generate variable voltage

Voltage Source AC Generate sinusoidal voltage

Voltage Source AC (3-Phase) Generate 3-phase sinusoidal voltage

Voltage Source DC Generate constant voltage

Meters

Ammeter Output measured current as signal

Meter (3-Phase) Measure voltages and currents of 3-phase system

Voltmeter Output measured voltage as signal

Passive Components

Capacitor Ideal capacitor

Electrical Algebraic Compo-
nent

Enforce an algebraic constraint in terms of voltage
and current

Inductor Ideal inductor
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Mutual Inductor Ideal mutual inductor

Mutual Inductance (2 Wind-
ings)

Magnetic coupling between two lossy windings

Mutual Inductance (3 Wind-
ings)

Magnetic coupling between three lossy windings

Pi-Section Line Single-phase pi-section transmission line

Piece-wise Linear Resistor Resistance defined by voltage-current pairs

Resistor Ideal resistor

Saturable Capacitor Capacitor with piece-wise linear saturation

Saturable Inductor Inductor with piece-wise linear saturation

Transmission Line (3ph) 3-phase transmission line

Variable Capacitor Capacitance controlled by signal

Variable Inductor Inductance controlled by signal

Variable Resistor Resistance controlled by signal

Variable Resistor with Con-
stant Capacitor

Controlled resistance in parallel with constant
capacitance

Variable Resistor with Con-
stant Inductor

Controlled resistance in series with constant induc-
tance

Variable Resistor with Vari-
able Capacitor

Controlled resistance in parallel with controlled
capacitance

Variable Resistor with Vari-
able Inductor

Controlled resistance in series with controlled in-
ductance

Power Semiconductors

Diode Ideal diode with optional forward voltage and on-
resistance

Diode with Reverse Recovery Dynamic diode model with reverse recovery

GTO Ideal GTO with optional forward voltage and on-
resistance

320



Electrical

GTO (Reverse Conducting) Ideal GTO with ideal anti-parallel diode

IGBT Ideal IGBT with optional forward voltage and on-
resistance

IGBT with Diode Ideal IGBT with ideal anti-parallel diode

IGBT with Limited di/dt Dynamic IGBT model with finite current slopes
during turn-on and turn-off

IGCT (Reverse Blocking) Ideal IGCT with optional forward voltage and on-
resistance

IGCT (Reverse Conducting) Ideal IGCT with ideal anti-parallel diode

MOSFET Ideal MOSFET with optional on-resistance

MOSFET with Diode Ideal MOSFET with ideal anti-parallel diode

MOSFET with Limited di/dt Dynamic MOSFET model with finite current slopes
during turn-on and turn-off

Thyristor Ideal thyristor (SCR) with optional forward voltage
and on-resistance

Thyristor with Reverse Recov-
ery

Dynamic thyristor (SCR) model with reverse recov-
ery

TRIAC Ideal TRIAC with optional forward voltage and
on-resistance

Zener Diode Zener diode with controlled reverse breakdown
voltage

Power Modules

3-Level Half Bridge (ANPC) Single leg of a 3-level active neutral-point clamped
half-bridge converter.

3-Level Half Bridge (T-Type) Single leg of a 3-level T-type half-bridge converter.

5-Level Half Bridge (ANPC), Single leg of a 5-level active neutral-point clamped
half-bridge converter.

3-Phase Current Source In-
verter

3-phase 2-level current source inverter IGBT mod-
ule.
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3-Phase Voltage Source In-
verter

3-phase 2-level voltage source inverter IGBT mod-
ule.

Dual Active Bridge Converter Dual Active Bridge converter module.

Flying Capacitor Half Bridge Multi-level inverter half bridge with flying capaci-
tors.

Full-Bridge LLC Resonant
Converter

Full-Bridge LLC Resonant Converter converter
module.

Half-Bridge LLC Resonant
Converter

Half-Bridge LLC Resonant Converter converter
module.

IGBT Chopper (Low-Side
Switch)

Chopper used in boost converters.

IGBT Chopper (High-Side
Switch)

Chopper used in buck converters.

IGBT Chopper (Low-Side
Switch with Reverse Diode)

Chopper used in boost converters.

IGBT Chopper (High-Side
Switch with Reverse Diode)

Chopper used in buck converters.

IGBT Half Bridge Single leg of a 2-level voltage source inverter.

IGBT 3-Level Half Bridge
(NPC)

Single leg of a 3-level neutral-point clamped voltage
source inverter.

IGBT Half Bridges (Low-
/High-Side Connected)

Series-connected inverter cells for modular multi-
level converters.

IGBT Full Bridges (Series
Connected)

Series-connected inverter cells for modular multi-
level converters.

Phase-Shifted Full-Bridge
Converter

Phase-Shifted Full-Bridge converter module.

Switches

Breaker AC circuit breaker opening at zero current

Double Switch Changeover switch with two positions
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Manual Double Switch Manual changeover switch with two positions

Manual Switch Manual on-off switch

Manual Triple Switch Manual changeover switch with three positions

Set/Reset Switch Bistable on-off switch

Switch On-off switch

Triple Switch Changeover switch with three positions

Transformers

Ideal Transformer Ideally coupled windings without inductance

Linear Transformer (2 Wind-
ings)

Single-phase transformer with winding resistance
and optional core loss

Linear Transformer (3 Wind-
ings)

Single-phase transformer with winding resistance
and optional core loss

Saturable Transformers Single-phase transformers with two resp. three
windings and core saturation

Transformers (3ph, 2 Wind-
ings)

3-phase transformers in Yy, Yd, Yz, Dy, Dd and Dz
connection

Transformers (3ph, 3 Wind-
ings)

3-phase transformers in Ydy and Ydz connection

Machines

Brushless DC Machine Detailed model of brushless DC machine excited by
permanent magnets

Brushless DC Machine (Sim-
ple)

Simplified model of brushless DC machine excited
by permanent magnets

DC Machine Simple model of DC machine

Induction Machine (Slip Ring) Non-saturable induction machine with slip-ring
rotor
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Induction Machine (Open
Stator Windings)

Non-saturable induction machine with squirrel-
cage rotor and open stator windings

Induction Machine (Squirrel
Cage)

Non-saturable induction machine with squirrel-
cage rotor

Induction Machine with Satu-
ration

Induction machine with slip-ring rotor and main-
flux saturation

Non-Excited Synchronous
Machine

Non-excited synchronous machine configurable
with lookup tables

Permanent Magnet Syn-
chronous Machine

Synchronous machine excited by permanent mag-
nets

Permanent Magnet Syn-
chronous Machine (Open
Winding)

Synchronous machine excited by permanent mag-
nets with open stator windings

Switched Reluctance Machine Detailed model of switched reluctance machine
with open windings

Synchronous Machine (Round
Rotor)

Smooth air-gap synchronous machine with main-
flux saturation

Synchronous Machine (Salient
Pole)

Salient-pole synchronous machine with main-flux
saturation

Synchronous Reluctance
Machine

Synchronous reluctance machine configurable with
lookup tables

Converters

Diode Rectifier (3ph) 3-phase diode rectifier

Ideal 3-Level Converter (3ph) Switch-based 3-phase 3-level converter

Ideal Converter (3ph) Switch-based 3-phase converter

IGBT 3-Level Converter (3ph) 3-phase 3-level neutral-point clamped IGBT con-
verter

IGBT Converter (3ph) 3-phase IGBT converter

MOSFET Converter (3ph) 3-phase MOSFET converter
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Thermal

Thyristor Rectifier/Inverter 3-phase thyristor rectifier/inverter

Electronics

Op-Amp Ideal operational amplifier with finite gain

Op-Amp with Limited Output Ideal operational amplifier with limited output
voltage

Model Settings

Electrical Model Settings Configure settings for an individual electrical cir-
cuit

Thermal

Connectivity

Ambient Temperature Connect to Heat Sink on which subsystem is placed

Thermal Ground Connect to common reference temperature

Thermal Multiplexer Combine several connections into one vector

Thermal Port Add thermal connector to subsystem

Thermal Selector Select or reorder elements from vector connection

Sources

Constant Heat Flow Generate constant heat flow

Controlled Heat Flow Generate variable heat flow

Constant Temperature Provide constant temperature

Controlled Temperature Provide variable temperature
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Meters

Heat Flow Meter Output measured heat flow as signal

Thermometer Output measured temperature as signal
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Magnetic

Components

Heat Sink Isotherm environment for placing components

Thermal Capacitor Thermal capacitance of piece of material

Thermal Chain Thermal impedance implemented as RC chain

Thermal Package Impedance Model thermal coupling in a semiconductor package

Thermal Resistor Thermal resistance of piece of material

Model Settings

Thermal Model Settings Configure settings for an individual thermal system

Magnetic

Connectivity

Magnetic Multiplexer Combine several connections into one vector

Magnetic Port Add magnetic connector to subsystem

Magnetic Selector Select or reorder elements from vector connection

Sources

MMF Source (Constant) Generate a constant magneto-motive force

MMF Source (Controlled) Generate a variable magneto-motive force
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Meters

Flux Rate Meter Output the measured rate-of-change of magnetic
flux

MMF Meter Output the measured magneto-motive force

Components

Air Gap Air gap in a magnetic core

Hysteretic Core Magnetic core element with static hysteresis

Leakage Flux Path Permeance of linear leakage flux path

Linear Core Linear magnetic core element

Magnetic Permeance Linear magnetic permeance

Magnetic Resistance Effective magnetic resistance for modeling losses

Saturable Core Magnetic core element with saturation

Variable Magnetic Permeance Variable permeance controlled by external signal

Winding Ideal winding defining an electro-magnetic inter-
face

Mechanical

Translational

Connectivity

Translational Multiplexer Combine several connections into one vector

Translational Port Add translational connector to subsystem

Translational Reference Connect to translational reference frame

Translational Selector Select or reorder elements from vector connection
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Sources

Force (Constant) Generate constant force

Force (Controlled) Generate variable force

Translational Speed (Con-
stant)

Maintain constant linear speed

Translational Speed (Con-
trolled)

Maintain variable linear speed

Sensors

Force Sensor Output measured force as signal

Position Sensor Output measured absolute or relative position as
signal

Translational Speed Sensor Output measured linear speed as signal

Components

Mass Model sliding mass with inertia

Rack and Pinion Ideal conversion between translational and rota-
tional motion

Translational Algebraic Com-
ponent

Define an algebraic constraint in terms of force and
speed

Translational Backlash Ideal translational backlash

Translational Clutch Ideal translational clutch

Translational Damper Ideal viscous translational damper

Translational Friction Ideal translational stick/slip friction

Translational Hard Stop Ideal translational single- or double-sided hard stop

Translational Port Add translational flange to subsystem

Translational Spring Ideal translational spring
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Model Settings

Translational Model Settings Configure settings for an individual mechanical
system

Rotational

Connectivity

Rotational Multiplexer Combine several connections into one vector

Rotational Port Add rotational connector to subsystem

Rotational Reference Connect to rotational reference frame

Rotational Selector Select or reorder elements from vector connection

Sources

Rotational Speed (Constant) Maintain constant angular speed

Rotational Speed (Controlled) Maintain variable angular speed

Torque (Constant) Generate constant torque

Torque (Controlled) Generate variable torque

Sensors

Angle Sensor Output measured absolute or relative angle as
signal

Rotational Speed Sensor Output measured angular speed as signal

Torque Sensor Output measured torque as signal
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Components

Gear Ideal gear

Inertia Model rotating body with inertia

Planetary Gear Set Ideal planetary gear set

Rack and Pinion Ideal conversion between translational and rota-
tional motion

Rotational Algebraic Compo-
nent

Define an algebraic constraint in terms of torque
and angular speed

Rotational Backlash Ideal rotational backlash

Rotational Clutch Ideal rotational clutch

Rotational Damper Ideal viscous rotational damper

Rotational Friction Ideal rotational stick/slip friction

Rotational Hard Stop Ideal rotational single- or double-sided hard stop

Torsion Spring Ideal torsion spring

Model Settings

Rotational Model Settings Configure settings for an individual mechanical
system

Additional Simulink Blocks

(PLECS Blockset only)

AC Sweep Perform AC sweep

Impulse Response Analysis Perform impulse response analysis

Loop Gain Analysis Determine loop gain of closed control loop

Steady-State Analysis Determine periodic steady-state operating point
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Timer Generate piece-wise constant signal
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Component Reference

This chapter lists the contents of the Component library in alphabetical order.



15 Component Reference

1D Look-Up Table

Purpose Compute piece-wise linear function of one input signal

Library Control / Functions & Tables

Description

1D
Table

The 1D Look-Up Table block maps an input signal to an output signal. You de-
fine the mapping function by specifying a vector of input values and a vector of
output values. If the input signal lies within the range of the input vector, the
output value is calculated by linear interpolation between the appropriate two
points. If the input signal is out of bounds, the block extrapolates using the first
or last two points.

Step transitions are achieved by repeating an input value with different output
values. If the input signal exactly matches the input value of such a disconti-
nuity, the output signal will be the output value of the mapping function that
is first encountered when moving away from the origin. If the discontinuity is
at input value 0, the output signal will be the average of the two output val-
ues. Provided zero-crossing signals are not active (see “Locate discontinuities”
below) this behavior can be overridden by defining three output values for the
same input value; in this case the middle output value will be chosen.

Use the 2D Look-Up Table block (see page 336) to map two input signals to an
output signal.

Parameters Vector of input values x
The vector of input values x. This vector must be the same size as the out-
put vector and monotonically increasing. It should not contain more than
three identical values.

Vector of output values f(x)
The vector containing the output values f(x). This vector must be the same
size as the input vector.

Locate discontinuities
When set to on, the Look-Up Table defines zero-crossing signals that pre-
vent a variable-step solver from inadvertently stepping over a discontinuity
of the input-output mapping or its derivative.

Note that the use of zero-crossing signals forces the mapping to be left- or
right-continuous. Therefore, it is not possible to specify an arbitrary output
value at a step discontinuity: if three output values are defined for the same
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1D Look-Up Table

input, the middle output value is neglected. Moreover, if the step disconti-
nuity is at input value 0, no averaging is performed: the first output value
corresponding to 0 is selected instead.

When set to off, the Look-Up Table does not explicitly influence the steps
taken by a variable-step solver.

Probe Signals Input
The block input signal.

Output
The block output signal.
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2D Look-Up Table

Purpose Compute piece-wise linear function of two input signals

Library Control / Functions & Tables

Description

2D
Table

x
y

The 2D Look-Up Table block maps two input signals to an output signal. You
define the mapping function by specifying two vectors of input values and a ma-
trix of output values. The input vector x corresponds to the rows of the output
matrix, the input vector y, to the columns.

The output value is interpolated or extrapolated from the block parameters us-
ing the technique described for the 1D Look-Up Table block (see page 334).

Parameters Vector of input values x
The vector of input values x. This vector must be the same size as the num-
ber of rows in the output matrix and monotonically increasing. It should not
contain more than three identical values.

Vector of input values y
The vector of input values y. This vector must be the same size as the num-
ber of columns in the output matrix and monotonically increasing. It should
not contain more than three identical values.

Matrix of output values f(x,y)
The matrix containing the output values f(x, y). The number of rows and
columns must match the size of the input vectors.

Locate discontinuities
When set to on, the Look-Up Table defines zero-crossing signals that pre-
vent a variable-step solver from inadvertently stepping over a discontinuity
of the input-output mapping or its derivative.

When set to off, the Look-Up Table does not explicitly influence the steps
taken by a variable-step solver.

Probe Signals Input x
The block input signal x.

Input y
The block input signal y.

Output
The block output signal.
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2-Pulse Generator

2-Pulse Generator

Purpose Generate firing pulses for H-bridge thyristor rectifier

Library Control / Modulators

Description This block generates the pulses used to fire the thyristors of an H-bridge rec-
tifier. The inputs of the block are a logical enable signal, a ramp signal φ (pro-
duced e.g. by a PLL), and the firing angle alpha.
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3-Level Half Bridge (ANPC)

Purpose 3-level active neutral-point clamped half-bridge converter module

Library Electrical / Power Modules

Description

S1

S2

S3

S4

S5

S6

This power module implements a single leg of a 3-level active neutral-point
clamped voltage source converter. It contains six IGBTs S1 to S6 as indicated
in the figure. The power module offers two configurations:

Switched All power semiconductors inside the module are modeled with ideal
switches. The individual IGBTs are controlled with logical gate signals. An
IGBT is on if the corresponding gate signal is not zero. For compatibility with
the averaged configuration it is recommended to use the value 1 for non-zero
gate signals.

Sub-cycle average The module as a whole is modeled with controlled volt-
age and current sources. The DC side of the inverter bridge has current source
behavior and must be connected to positively biased capacitors or voltage
sources. The phase terminal is typically connected to an inductor. The control
inputs are the relative on-times of the IGBTs with values between 0 and 1.

In the average configuration the half bridge can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values 0
and 1.

• The control signals are the duty cycles of the individual IGBTs. They are ei-
ther computed directly from the modulation index or by periodically averag-
ing the digital gate signals over a fixed period of time, e.g. using the Periodic
Average block (see page 589). The averaging period does not need to be syn-
chronized with the PWM and can be as large as the inverse of the switching
frequency.

In both use cases, the average implementation correctly accounts for blanking
times, i.e. when during commutation less than two IGBTs are turned on. It also
supports discontinuous conduction mode, e.g. when charging the DC link capac-
itors via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.
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3-Level Half Bridge (ANPC)

Note The sub-cycle average implementation cannot model a shoot-through or
clamping of the DC side. Therefore, the sums of the control signals for switches
S1 and S4, switches S1 and S3 and switches S2 and S4 must not exceed 1 at
any time. Additionally, the control signals for switches S1 and S5 and switch S4
and S6 must not exceed 1 at any time. Also, the applied DC voltages must never
become negative.

Parameters Configuration
Switched or averaged circuit model.

Semiconductor symbol
This setting lets you choose between IGBT and MOSFET for the symbol the
active semiconductor switches. This setting does not change the electrical
behavior of the power module in simulation.

Assertions
When set to on, the block will flag an error if the sums of the control signals
for S1 and S4, S1 and S3, S2 and S4, S1 and S5, or S4 and S6 exceed 1 at
any time.
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3-Level Half Bridge (T-Type)

Purpose 3-level T-type half-bridge converter module

Library Electrical / Power Modules

Description This power module implements a single leg of a 3-level T-Type voltage source
converter. It contains four IGBTs: IGBT 1 between DC positive and phase out-
put, IGBT 2 (left) and IGBT 3 (right) between DC neutral and phase output and
IGBT 4 between phase output and DC negative. The power module offers two
configurations:

Switched All power semiconductors inside the module are modeled with ideal
switches. The individual IGBTs are controlled with logical gate signals. An
IGBT is on if the corresponding gate signal is not zero. For compatibility with
the averaged configuration it is recommended to use the value 1 for non-zero
gate signals.

Sub-cycle average The module as a whole is modeled with controlled volt-
age and current sources. The DC side of the inverter bridge has current source
behavior and must be connected to positively biased capacitors or voltage
sources. The phase terminal is typically connected to an inductor. The control
inputs are the relative on-times of the IGBTs with values between 0 and 1.

In the average configuration the half bridge can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values 0
and 1.

• The control signals are the duty cycles of the individual IGBTs. They are ei-
ther computed directly from the modulation index or by periodically averag-
ing the digital gate signals over a fixed period of time, e.g. using the Periodic
Average block (see page 589). The averaging period does not need to be syn-
chronized with the PWM and can be as large as the inverse of the switching
frequency.

In both use cases, the average implementation correctly accounts for blanking
times, i.e. when during commutation less than two IGBTs are turned on. It also
supports discontinuous conduction mode, e.g. when charging the DC link capac-
itors via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.
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Note The sub-cycle average implementation cannot model a shoot-through or
clamping of the DC side. Therefore, the sums of the control signals for the first
and fourth IGBT and first and third IGBT and second and fourth IGBT must
not exceed 1 at any time. Also, the applied DC voltages must never become neg-
ative.

Parameters Configuration
Switched or averaged circuit model.

Semiconductor symbol
This setting lets you choose between IGBT and MOSFET for the symbol the
active semiconductor switches. This setting does not change the electrical
behavior of the power module in simulation.

Neutral-point connection
Specifies if IGBT 2 and 3 are series connected with Common collector
(drain for MOSFETs) or Common emitter (source for MOSFETs).

Assertions
When set to on, the block will flag an error if the sums of the control signals
for IGBT 1 and 4 or IGBT 1 and 3 or IGBT 2 and 4 exceed 1.
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5-Level Half Bridge (ANPC)

Purpose 5-level active neutral-point clamped half-bridge converter module

Library Electrical / Power Modules

Description

S1

S2

S3

S4

S5

S7

S8

S6

This power module implements a single leg of a 5-level active neutral-point
clamped voltage source converter. It contains eight IGBTs S1 to S8 as indicated
in the figure showing the component symbol. The power module offers two con-
figurations:

Switched All power semiconductors inside the module are modeled with ideal
switches. The individual IGBTs are controlled with logical gate signals. An
IGBT is on if the corresponding gate signal is not zero. For compatibility with
the averaged configuration it is recommended to use the value 1 for non-zero
gate signals.

Sub-cycle average The module as a whole is modeled with controlled volt-
age and current sources. The DC side of the inverter bridge has current source
behavior and must be connected to positively biased capacitors or voltage
sources. The phase terminal is typically connected to an inductor. The control
inputs are the relative on-times of the IGBTs with values between 0 and 1.

In the average configuration the half bridge can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values 0
and 1.

• The control signals are the duty cycles of the individual IGBTs. They are ei-
ther computed directly from the modulation index or by periodically averag-
ing the digital gate signals over a fixed period of time, e.g. using the Periodic
Average block (see page 589). The averaging period does not need to be syn-
chronized with the PWM and can be as large as the inverse of the switching
frequency.

In both use cases, the average implementation correctly accounts for blanking
times, i.e. when during commutation less than two IGBTs are turned on. It also
supports discontinuous conduction mode, e.g. when charging the DC link capac-
itors via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.
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Note The sub-cycle average implementation cannot model a shoot-through or
clamping of the DC side. Therefore, the sums of the control signals for switches
must respect the given restrictions summarized below under the Assertions
parameter at any time. Also, the applied DC voltages must never become nega-
tive.

Parameters Configuration
Switched or averaged circuit model.

Semiconductor symbol
This setting lets you choose between IGBT and MOSFET for the symbol the
active semiconductor switches. This setting does not change the electrical
behavior of the power module in simulation.

Assertions
When set to on, the block will flag an error if the sums of the control signals
for:
• S1 and S2
• S3 and S4
• S5 and S8
• S6 and S7
become large than zero at any point in time.
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3-Phase Current Source Inverter

Purpose 3-phase 2-level current source inverter IGBT module

Library Electrical / Power Modules

Description

This power module implements a 3-phase 2-level current source inverter. It of-
fers two configurations:

Switched All power semiconductors inside the module are modeled with ideal
switches. The individual IGBTs are controlled with logical gate signals. An
IGBT is on if the corresponding gate signal is not zero. For compatibility with
the averaged configuration it is recommended to use the value 1 for non-zero
gate signals.

Sub-cycle average The module as a whole is modeled with controlled volt-
age and current sources. The DC side of the inverter has voltage source behav-
ior and must be connected to positively biased inductors or current sources.
The phase terminals are typically connected to filter capacitors. Only delta-
connected filter capacitors are allowed since no neutral point is considered in
the model. The six control inputs are the relative on-times of the IGBTs with
values between 0 and 1.

In the average configuration the 3-phase 2-level current source inverter can be
operated in two ways:

• The control signals are instantaneous logical gate signals having the values 0
and 1.

• The control signals are the duty cycles of the individual IGBTs. They are ei-
ther computed directly from the modulation index or by periodically averag-
ing the digital gate signals over a fixed period of time, e.g. using the Periodic
Average block (see page 589). The averaging period does not need to be syn-
chronized with the PWM and can be as large as the inverse of the switching
frequency.
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In both use cases, the average implementation correctly accounts for live times,
i.e. when during commutation at least one of the upper IGBTs and one of the
lower IGBTs are both turned on to sustain the dc-side externally connected cur-
rent source.

It also supports rectifier operation mode, when power is flowing from AC side to
DC side. In rectifier mode, both cases of free-wheeling diode on dc-side and no
free-wheeling diode are included. It has to be specified correctly under Parame-
ters of the mask dialogue window.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.

Note The sub-cycle average implementation cannot model an open circuit
of the DC side. Therefore for inverter mode, the sum of the control signals for
the upper three IGBTs and the lower three IGBTs must larger than 1 at any
point in time. The block will flag an error if this condition is not met. For recti-
fier mode, please see the description Free-wheeling Diode parameter below.
Also, the applied DC currents must never become negative.

Parameters Configuration
Switched or averaged circuit model.

Free-wheeling diode on DC side
This parameter is only applicable for rectifier mode. The option no means
no extra free-wheeling diode on the DC side is modeled and that the sum of
the control signals for the upper three IGBTs and the lower three IGBTs
must be larger than 1 at any point in time. Otherwise the block will flag
an error. The option yes means an extra DC-side free-wheeling diode is in-
cluded. In this case no flag error will be triggered when the sum of the con-
trol signals for the upper three IGBTs and the lower three IGBTs is smaller
than 1, because the DC current can flow through this extra free-wheeling
diode.
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3-Phase Voltage Source Inverter

Purpose 3-phase 2-level voltage source inverter IGBT module

Library Electrical / Power Modules

Description
1

1
1

1

1

1

1

1

1

1

1

This power module implements a 3-phase 2-level voltage source inverter. It of-
fers two configurations:

Switched All power semiconductors inside the module are modeled with ideal
switches. The individual IGBTs are controlled with logical gate signals. An
IGBT is on if the corresponding gate signal is not zero. For compatibility with
the averaged configuration it is recommended to use the value 1 for non-zero
gate signals.

Sub-cycle average The module as a whole is implemented with 3 half-
bridge power modules which are modelled with controlled voltage and current
sources. The DC side of the inverter has current source behavior and must be
connected to a positively biased capacitor or voltage source. The output termi-
nal is typically connected to an inductor. The control inputs are the relative on-
times of the IGBTs with values between 0 and 1.

In the average configuration the 3-phase 2-level voltage source inverter can be
operated in two ways:

• The control signals are instantaneous logical gate signals having the values 0
and 1.

• The control signals are the duty cycles of the individual IGBTs. They are ei-
ther computed directly from the modulation index or by periodically averag-
ing the digital gate signals over a fixed period of time, e.g. using the Periodic
Average block (see page 589). The averaging period does not need to be syn-
chronized with the PWM and can be as large as the inverse of the switching
frequency.

346



3-Phase Voltage Source Inverter

In both use cases, the average implementation correctly accounts for blanking
times, i.e. when during commutation both IGBTs are turned off. It also sup-
ports discontinuous conduction mode, e.g. when charging the DC link capacitor
via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.

Note The sub-cycle average implementation cannot model a shoot-through or
clamping of the DC side. Therefore, the sums of the control signals for the high
and low side IGBTs in each half-bridge must not exceed 1 at any time. Also, the
applied DC voltages must never become negative.

Parameters Configuration
Switched or averaged circuit model.

Semiconductor symbol
This setting lets you choose between IGBT and MOSFET for the symbol the
active semiconductor switches. This setting does not change the electrical
behavior of the power module in simulation.

Assertions
When set to on, the block will flag an error if the sums of the control signals
for any of the four half-bridges exceed 1.
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3D Look-Up Table

Purpose Compute piece-wise linear function of three input signals

Library Control / Functions & Tables

Description

3D
Table

x
y
z

The 3D Look-Up Table block maps three input signals to an output signal. You
define the mapping function by specifying three vectors of input values and an
array of output values. The input vectors x, y and z correspond to the first, sec-
ond and third dimension of the output array.

The output value is interpolated or extrapolated from the block parameters us-
ing the technique described for the 1D Look-Up Table block (see page 334).

Parameters Vector of input values x
The vector of input values x. This vector must be the same size as the size
of the first dimension in the output array and monotonically increasing. It
should not contain more than three identical values.

Vector of input values y
The vector of input values y. This vector must be the same size as the size of
the second dimension in the output array and monotonically increasing. It
should not contain more than three identical values.

Vector of input values z
The vector of input values z. This vector must be the same size as the size
of the third dimension in the output array and monotonically increasing. It
should not contain more than three identical values.

3D array of output values f(x,y,z)
The array containing the output values f(x, y, z). The dimensions must
match the size of the input vectors.

Locate discontinuities
When set to on, the Look-Up Table defines zero-crossing signals that pre-
vent a variable-step solver from inadvertently stepping over a discontinuity
of the input-output mapping or its derivative.

When set to off, the Look-Up Table does not explicitly influence the steps
taken by a variable-step solver.

Probe Signals Input x
The block input signal x.

Input y
The block input signal y.
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Input z
The block input signal z.

Output
The block output signal.
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3-Phase Overmodulation

Purpose Extend linear range of modulation index for 3-phase inverters

Library Control / Modulators

Description For three-phase signals, this block extends the linear range of the modulation
index from [−1, 1] to [−1.154, 1.154] by adding a zero-sequence offset. This block
may be used for the control of three-phase converters without neutral point con-
nection such as the IGBT Converter (see page 494).
The figures below illustrates the working principle of the 3-Phase Overmodula-
tion block in conjunction with the Symmetrical PWM (see page 706).

−1

0

1

Original modulation indices

−1

0

1

Offset

−1

0

1

Corrected modulation indices

−1

0

1

Resulting pulses
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3-Phase Index-Based Modulation

Purpose Generate the modulation index for a three-phase reference voltage

Library Control / Modulators

Description

m
Vabc*

vdc

This block generates the modulation index for a three-phase reference voltage
defined by the input V ∗

abc with the chosen modulation strategy. This block may
be used in series with a PWM generation block for the control of three-phase
inverters without neutral point connection.

A universal representation of the three-phase modulation index output is as
follows (phase i = a,b, c):

mi(t) = m∗
i (t) +m0(t)

where m0(t) represents the zero-sequence harmonic injected into all three
phases, dependant on the selected modulation strategy.

m∗
i (t) represents three-phase fundamental sinusoidal modulation indices cal-

culated using the block inputs, i.e. V ∗
abc divided by Vdc/2. It can be written as

follows:

m∗
a(t) = M sinωt

m∗
b(t) = M sin(ωt− 2π

3
)

m∗
c(t) = M sin(ωt+

2π

3
)

M stands for the modulation depth of the three-phase converter, where M = 1
defines the limit of the linear modulation range by the Sinusoidal PWM modula-
tion strategy (i.e. the formed voltage vector modulus equals to Vdc/2).

The modulation strategies demonstrated below all showcase the same M = 1
for a three-phase reference voltage at 50Hz fundamental frequency. The modu-
lation index pattern of only phase A is depicted in each case, i.e. ma(t).
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Sinusoidal PWM Sinusoidal modulation without adding a zero sequence, i.e.

m0(t) = 0 .

SPWM

Time	(s)
0.00 0.02 0.04

-1

0

1

Space Vector PWM (Symmetrical) Symmetrical SVPWM pattern where
the injected zero sequence

m0(t) = 1/2 (1−m∗
max(t)) + 1/2 (−1−m∗

min(t)) .

Note that m∗
max(t) and m∗

min(t) represent the instantaneous maximum and min-
imum of the three-phase m∗

i (t) signals respectively.

SVPWM	(Symmetrical)

Time	(s)
0.00 0.02 0.04

-1

0

1

Space Vector PWM (DPWM1) For the Discontinuous PWM pattern 1, the
one with the largest magnitude between m∗

max(t) and m∗
min(t) determines the

injected zero sequence. m0(t) can be expressed by:

m0(t) =

{
1−m∗

max(t), |m∗
max(t)| ≥ |m∗

min(t)|

−1−m∗
min(t), |m∗

max(t)| < |m∗
min(t)|
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It represents a 60-degree max/min modulation index clamping interval, cen-
tered at each half fundamental period.

SVPWM	(DPWM1)

Time	(s)
0.00 0.02 0.04

-1

0

1

Space Vector PWM (DPWM0) For the Discontinuous PWM pattern 0, the
zero-sequence signal is generated based on the one in DPWM1. The only dif-
ference is that the three-phase m∗

i (t) signals are phase-shifted by 30-degree
leading, and still the signal with the largest magnitude between the shifted
m∗

lead_max(t) and m∗
lead_min(t) determines the injected zero sequence. m0(t) can

be expressed by:

m0(t) =

{
1−m∗

max(t), |m∗
lead_max(t)| ≥ |m∗

lead_min(t)|

−1−m∗
min(t), |m∗

lead_max(t)| < |m∗
lead_min(t)|

SVPWM	(DPWM0)

Time	(s)
0.00 0.02 0.04

-1

0

1

Space Vector PWM (DPWM2) For the Discontinuous PWM pattern 2, the
zero-sequence signal is generated based on the one in DPWM1. The only dif-
ference is that the three-phase m∗

i (t) signals are phase-shifted by 30-degree
lagging, and still the signal with the largest magnitude between the shifted
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m∗
lag_max(t) and m∗

lag_min(t) determines the injected zero sequence. m0(t) can be
expressed by:

m0(t) =

{
1−m∗

max(t), |m∗
lag_max(t)| ≥ |m∗

lag_min(t)|

−1−m∗
min(t), |m∗

lag_max(t)| < |m∗
lag_min(t)|

SVPWM	(DPWM2)

Time	(s)
0.00 0.02 0.04

-1

0

1

Space Vector PWM (DPWM3) For the Discontinuous PWM pattern 3, the
one with smallest magnitude between m∗

max(t) and m∗
min(t) determines the in-

jected zero sequence. m0(t) can be expressed by:

m0(t) =

{
1−m∗

max(t), |m∗
max(t)| < |m∗

min(t)|

−1−m∗
min(t), |m∗

max(t)| ≥ |m∗
min(t)|

It represents a 30-degree max/min modulation index clamping interval, cen-
tered at every quarter of the fundamental period.

SVPWM	(DPWM3)

Time	(s)
0.00 0.02 0.04

-1

0

1
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Space Vector PWM (DPWMMIN) For the Discontinuous PWM MIN pat-
tern, m∗

min(t) determines the injected zero sequence. m0(t) can be expressed by:

m0(t) = −1−m∗
min(t)

It clamps the modulation index to −1 for a 120-degree interval, centered inside
each negative half fundamental period.

SVPWM	(DPWMMIN)

Time	(s)
0.00 0.02 0.04

-1

0

1

Space Vector PWM (DPWMMAX) For the Discontinuous PWM MAX pat-
tern, m∗

max(t) determines the injected zero sequence. m0(t) can be expressed by:

m0(t) = 1−m∗
max(t)

It clamps the modulation index to 1 for a 120-degree interval, centered inside
each positive half fundamental period.

SVPWM	(DPWMMAX)

Time	(s)
0.00 0.02 0.04

-1

0

1

Parameters Modulation strategy
The modulation strategy can be set to Sinusoidal PWM, Space Vector PWM
(Symmetrical), Space Vector PWM (DPWM0), Space Vector PWM (DPWM1),
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Space Vector PWM (DPWM2), Space Vector PWM (DPWM3), Space Vector
PWM (DPWMMIN), Space Vector PWM (DPWMMAX) using the combo box.

Inputs and
Outputs

DC voltage
The input signal Vdc is the voltage measured on the dc side of the inverter,
specified as a scalar.

Reference voltage
This input, labeled V ∗

abc, is a three-dimensional vector signal comprising the
three-phase voltage reference [V ∗

a , V
∗
b , V

∗
c ].

Modulation index output
The output labeled m is formed from three-phase modulation indices
[ma,mb,mc] of the selected modulation strategy, which is also a three-
dimensional vector signal. For the linear modulation range of each modu-
lation strategy it varies within [−1, 1]. A PWM generator block can be con-
nected in series with this block to generate control signals for the three-
phase inverter legs A, B, and C.

Probe Signals 3-phase modulation index
A vector signal consisting of the three-phase modulation indices,
[ma,mb,mc] for the selected modulation strategy.

References
K. Zhou and D. Wang, “Relationship between space-vector modulation and

three-phase carrier-based PWM: a comprehensive analysis three-phase
inverters,” in IEEE Transactions on Industrial Electronics, vol. 49, no. 1,
pp. 186-196, Feb. 2002.

A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical
methods for carrier-based PWM-VSI drives,” in IEEE Transactions on
Power Electronics, vol. 14, no. 1, pp. 49-61, Jan. 1999.
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6-Pulse Generator

Purpose Generate firing pulses for 3-phase thyristor rectifier

Library Control / Modulators

Description This block generates the pulses used to fire the thyristors of a 6-pulse rectifier
or inverter. The inputs of the block are a logical enable signal, a ramp signal φ
(produced e.g. by a PLL), and the firing angle alpha.

If the “Double pulses” option is selected, each thyristor receives two pulses: one
when the firing angle is reached, and a second, when the next thyristor is fired.

Parameters Pulse width
The width of the firing pulses in radians with respect to one period of funda-
mental frequency.

Pulse type
“Double pulses” enables a second firing pulse for each thyristor.

357



15 Component Reference

Abs

Purpose Calculate absolute value of input signal

Library Control / Math

Description The Abs block outputs the absolute value of the input signals, y = |u|.

Probe Signals Input
The block input signal.

Output
The block output signal.
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Algebraic Constraint

Purpose Enforce an algebraic constraint by solving a system of equations

Library Control / Math

Description The Algebraic Constraint block outputs the value that produces zero at the in-
put. The output must affect the input by means of a direct feedthrough path.
The block ensures that the input signal is zero at all times.

The direct feedthrough path defines a function f of the output signal x. The Al-
gebraic Constraint block solves the system of equations f(x) = 0. The input and
output signals must have the same width, i.e. the number of equations must
equal the number of unknowns.

Note The Algebraic Constraint block creates an algebraic loop. See section
“Block Sorting” (on page 31) for more information on algebraic loops.

Parameters Initial guess
A guess of the solution x at the start of the simulation. The parameter can
be either a scalar or a vector with the same width as the output and input
signals. If a scalar is specified, the value is used as an initial guess for all
components of the output signal. The default is 0.

Probe Signals Residual
The constraint residual f .

Solution
The computed solution x.
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Ambient Temperature

Purpose Connect to Heat Sink on which component is placed

Library Thermal / Connectivity

Description The Ambient Temperature is only useful in subsystems. When placed in a sub-
system, it provides a thermal connection to the heat sink that encloses the sub-
system.

For more information see section “Heat Sinks and Subsystems” (on page 136).

Note Ambient Temperature blocks may not be used in schematics that con-
tain Thermal Port blocks (see page 734).

Parameters Allow vector connection to scalar heat sink
This parameter is only relevant if the block has a non-scalar inner connec-
tion. When the parameter is set to on, the enclosing heat sink must also be
non-scalar and have a matching width. When the parameter is set to off
(the default), the enclosing heat sink may also be scalar, and all elements of
the inner connection will be connected to the single heat sink element.

360



Air Gap

Air Gap

Purpose Air gap in a magnetic core

Library Magnetic / Components

Description This component models an air gap in a magnetic core. It establishes a linear
relationship between the magnetic flux Φ and the magneto-motive force F

Φ

F
=

µ0A

l

where µ0 = 4π × 10−7 N/A2 is the magnetic constant, A is the cross-sectional
area and l the length of the flux path.

Parameters Cross-sectional area
Effective cross-sectional area A of the air gap, in square meters (m2).

Length of flux path
Effective length l of the air gap, in meters (m).

Initial MMF
Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked ter-
minal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.

Field strength
The magnetic field strength H in the air gap, in amperes per meter (A/m).

Flux density
The magnetic flux density B in the air gap, in teslas (T).
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Ammeter

Purpose Output measured current as signal

Library Electrical / Meters

Description

A

The Ammeter measures the current through the component and provides it as
a signal at the output. The direction of a positive current is indicated with a
small arrow in the component symbol. The output signal can be made accessi-
ble in Simulink with an Output block (see page 674) or by dragging the compo-
nent into the dialog box of a Probe block.

Note The Ammeter is ideal, i.e. it has zero internal resistance. Hence, if mul-
tiple ammeters are connected in parallel, the current through an individual am-
meter is undefined. This produces a run-time error.

Probe Signal Measured current
The measured current in amperes (A).
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Angle Sensor

Purpose Output measured absolute or relative angle as signal

Library Mechanical / Rotational / Sensors

Description The Angle Sensor measures the relative angle of the flange marked with a dot
with respect to the other flange. If the other flange is connected to the reference
frame, the absolute angle is measured.

Note Speed and angle sensors are ideally compliant. Hence, if multiple speed
or angle sensors are connected in series, the speed or angle measured by an in-
dividual sensor is undefined. This produces a run-time error.

Parameters Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Initial angle
The angle at simulation start, in radians.

Probe Signal Angle
The measured angle, in radians.
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Assert Dynamic Lower Limit

Purpose Issue a warning or an error message when the input exceeds the specified dy-
namic lower limit

Library Assertions

Description This block checks whether the middle input signal lies above the other input
signal. When the check fails, a message is added to the diagnostics window and
the simulation may be paused or stopped.

Parameters Limit
Either include or exclude, indicating whether the limit is included in or
excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window; warn-
ing/pause: when the assertion fails, a warning is added to the diagnostics
window and the simulation is paused; error: when the assertion fails, an
error is added to the diagnostics window and the simulation is stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 111). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 94).

Message
The message that is displayed in the diagnostics window when the assertion
fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is above the lower limit and 0 otherwise.

Lower limit
The lower limit input signal.
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Assert Dynamic Range

Purpose Issue a warning or an error message when the input leaves the specified dy-
namic range

Library Assertions

Description This block checks whether the middle input signal lies between the two other
input signals. When the check fails, a message is added to the diagnostics win-
dow and the simulation may be paused or stopped.

Parameters Limits
Either include or exclude, indicating whether the limits are included in or
excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window; warn-
ing/pause: when the assertion fails, a warning is added to the diagnostics
window and the simulation is paused; error: when the assertion fails, an
error is added to the diagnostics window and the simulation is stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 111). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 94).

Message
The message that is displayed in the diagnostics window when the assertion
fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is within the range and 0 otherwise.

Upper limit
The upper limit input signal.

Lower limit
The lower limit input signal.
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Assert Dynamic Upper Limit

Purpose Issue a warning or an error message when the input exceeds the specified dy-
namic upper limit

Library Assertions

Description This block checks whether the middle input signal lies below the other input
signal. When the check fails, a message is added to the diagnostics window and
the simulation may be paused or stopped.

Parameters Limit
Either include or exclude, indicating whether the limit is included in or
excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window; warn-
ing/pause: when the assertion fails, a warning is added to the diagnostics
window and the simulation is paused; error: when the assertion fails, an
error is added to the diagnostics window and the simulation is stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 111). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 94).

Message
The message that is displayed in the diagnostics window when the assertion
fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is below the upper limit and 0 otherwise.

Upper limit
The upper limit input signal.
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Assertion

Purpose Issue a warning or an error message when the input becomes 0

Library Assertions

Description The assertion block checks whether a condition stays true during the simula-
tion. While the input signal is non-zero, the block does nothing. When the input
signal becomes zero, the specified message appears. Depending on the “action”
setting, the message is added either as a warning or as an error to the diagnos-
tics window. If it is added as a warning, it is possible to additionally automat-
ically pause the simulation. If it is added as an error, the simulation always
stops. To disable the assertion, set its action to ignore.

Parameters Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window; warn-
ing/pause: when the assertion fails, a warning is added to the diagnostics
window and the simulation is paused; error: when the assertion fails, an
error is added to the diagnostics window and the simulation is stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 111). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 94).

Message
The message that is displayed in the diagnostics window when the assertion
fails.

Highlight level
The number of levels the highlight is propagated upwards in the component
hierarchy when the assertion fails. A highlight level of 0 means that the as-
sertion block itself will be highlighted when the assertion fails. A highlight
level of 1 means that the component containing the assertion block will be
highlighted when the assertion fails, etc.
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Assert Lower Limit

Purpose Issue a warning or an error message when the input exceeds the specified lower
limit

Library Assertions

Description This block checks whether the input signal lies above the specified lower limit.
When the check fails, a message is added to the diagnostics window and the
simulation may be paused or stopped.

Parameters Lower limit
A constant specifying the lower limit for the input signal.

Limit
Either include or exclude, indicating whether the limit is included in or
excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window; warn-
ing/pause: when the assertion fails, a warning is added to the diagnostics
window and the simulation is paused; error: when the assertion fails, an
error is added to the diagnostics window and the simulation is stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 111). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 94).

Message
The message that is displayed in the diagnostics window when the assertion
fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is above the lower limit and 0 otherwise.
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Assert Range

Purpose Issue a warning or an error message when the input leaves the specified range

Library Assertions

Description This block checks whether the input signal lies between the specified lower and
upper limits. When the check fails, a message is added to the diagnostics win-
dow and the simulation may be paused or stopped.

Parameters Upper limit
A constant specifying the upper limit for the input signal.

Lower limit
A constant specifying the lower limit for the input signal.

Limits
Either include or exclude, indicating whether the limits are included in or
excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window; warn-
ing/pause: when the assertion fails, a warning is added to the diagnostics
window and the simulation is paused; error: when the assertion fails, an
error is added to the diagnostics window and the simulation is stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 111). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 94).

Message
The message that is displayed in the diagnostics window when the assertion
fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is within the range and 0 otherwise.
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Assert Upper Limit

Purpose Issue a warning or an error message when the input exceeds the specified up-
per limit

Library Assertions

Description This block checks whether the input signal lies below the specified upper limit.
When the check fails, a message is added to the diagnostics window and the
simulation may be paused or stopped.

Parameters Upper limit
A constant specifying the upper limit for the input signal.

Limit
Either include or exclude, indicating whether the limit is included in or
excluded from the allowed range.

Action
One of the following: ignore: the assertion is ignored; warning: when
the assertion fails, a warning is added to the diagnostics window; warn-
ing/pause: when the assertion fails, a warning is added to the diagnostics
window and the simulation is paused; error: when the assertion fails, an
error is added to the diagnostics window and the simulation is stopped.

This parameter can be overwritten on a per model basis (see “Simula-
tion Parameters” on page 111). Note that during analyses and simulation
scripts, assertions may be partly disabled (see “Assertions” on page 94).

Message
The message that is displayed in the diagnostics window when the assertion
fails.

Probe Signals Input
The middle input signal.

Assertion value
1 while the input is below the upper limit and 0 otherwise.
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Blanking Time

Purpose Generate commutation delay for 2-level inverter bridges

Library Control / Modulators

Description This block generates a blanking time for 2-level inverter bridges so that the
turn-on of one switch is delayed with respect to the turn-off of the other switch
in the same inverter leg.

The input s is a switching function with the values −1 and 1 generated by a 2-
level modulator such as the Symmetrical PWM generator (see page 706). The
values of the output s’ are either −1 (lower switch turned on), 0 (both switches
off) or 1 (upper switch on). If the input is a vector, the output is also a vector of
the same width.

Parameter Delay time
The delay in seconds (s) between the turn-off of one switch and the turn-on
of the other switch in an inverter leg.
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Blanking Time (3-Level)

Purpose Generate commutation delay for 3-level inverter bridges

Library Control / Modulators

Description This block generates a blanking time for 3-level inverter bridges so that the
turn-on of one switch is delayed with respect to the turn-off of the other switch
in the same inverter leg.

The input s is a switching function with the values −1, 0 and 1 generated by a
3-level modulator such as the Symmetrical PWM (3-Level) generator (see page
709). The values of the output s’ are either −1, −0.5, 0, 0.5 or 1. If the input is a
vector, the output is also a vector of the same width.

Parameter Delay time
The delay in seconds (s) between the turn-off of one switch and the turn-on
of another switch in an inverter leg.
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Breaker

Purpose AC circuit breaker opening at zero current

Library Electrical / Switches

Description This component provides an ideal short or open circuit between its two electri-
cal terminals. The switch closes when the controlling signal becomes non-zero.
It opens when both the signal and the current are zero. Therefore, this circuit
breaker can be used to interrupt inductive AC currents.

Parameter Initial conductivity
Initial conduction state of the breaker. The breaker is initially open if the
parameter evaluates to zero, otherwise closed. This parameter may either
be a scalar or a vector corresponding to the implicit width of the component.
The default value is 0.

Probe Signals Breaker current
The current through the component in amperes (A). A positive current
flows from the left to the right terminal in the above breaker icon.

Breaker conductivity
Conduction state of the internal switch. The signal outputs 0 if the breaker
is open, and 1 if it is closed.
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Brushless DC Machine

Purpose Detailed model of brushless DC machine excited by permanent magnets

Library Electrical / Machines

Description A brushless DC machine is a type of permanent magnet synchronous machine
in which the back electromotive force (EMF) is not sinusoidal but has a more or
less trapezoidal shape. Additionally, the variation of the stator inductance with
the rotor position is not necessarily sinusoidal.

The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed, the machine is operating in motor mode, oth-
erwise in generator mode. In the component icon, phase a of the stator winding
is marked with a dot.

Electrical System

La(θe)R ea(θe,ωm)ia

The back EMF voltages are determined by a shape function ke and the mechan-
ical rotor speed ωm. The shape function in turn is expressed as a fourier series
of the electrical rotor angle θe:

ex(θe, ωm) = ke,x(θe) · ωm

ke,a(θe) =
∑
n

Kc,n cos(nθe) +Ks,n sin(nθe)

ke,b(θe) =
∑
n

Kc,n cos(nθe −
2πn

3
) +Ks,n sin(nθe −

2πn

3
)

ke,c(θe) =
∑
n

Kc,n cos(nθe +
2πn

3
) +Ks,n sin(nθe +

2πn

3
)

374



Brushless DC Machine

The stator self inductance is also expressed as a fourier series of the electrical
rotor angle. The mutual inductance M between the stator phases is assumed
to be constant. Since the stator windings are star connected, the mutual induc-
tance can simply be subtracted from the self inductance:

La(θe) = L0 −M +
∑
n

Lc,n cos(nθe) + Ls,n sin(nθe)

Electromechanical System

The electromagnetic torque is a superposition of the torque caused by the per-
manent magnet and a reluctance torque caused by the non-constant stator in-
ductance:

Te =
∑

x=a,b,c

ke,xix +
p

2

dLx

dθe
i2x

The cogging torque is again expressed as a fourier series of the electrical rotor
angle:

Tcog(θe) =
∑
n

Tc,n cos(nθe) + Ts,n sin(nθe)

Mechanical System

Mechanical rotor speed:

ω̇m =
1

J
(Te + Tcog(θe)− Fωm − Tm)

Mechanical and electrical rotor angle:

θ̇m = ωm

θe = p · θm

Parameters Back EMF shape coefficients
Fourier coefficients Kc,n and Ks,n of the back EMF shape function ke,a(θe) in
(Vs).

Stator resistance
The stator resistance R in ohms (Ω).

Stator inductance
The constant inductance L0 −M and the fourier coefficients Lc,n, Ls,n of the
phase a inductance La(θe) in henries (H).
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Cogging torque coefficients
Fourier coefficients Tc,n, Ts,n of the cogging torque Tcog(θe) in (Nm).

Inertia
Combined rotor and load inertia J in (Nms2).

Friction coefficient
Viscous friction F in (Nms).

Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical speed ωm,0 in radians per second

(
rad
s

)
.

Initial rotor angle
Initial mechanical rotor angle θm,0 in radians.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A).

Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in amperes (A). Cur-
rents flowing into the machine are considered positive.

Back EMF
The back EMF voltages ea, eb, ec in volts (V).

Rotational speed
The rotational speed ωm of the rotor in radians per second

(
rad
s

)
.

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in (Nm).

Cogging torque
The cogging torque Tcog of the machine in (Nm).

References
D. Hanselman, "Brushless permanent magnet motor design, 2nd ed.", The

Writers’ Collective, Mar. 2003.

P. Pillay, R. Krishnan, "Modeling, simulation, and analysis of permanent-
magnet motor drives, Part II: The brushless DC motor drive", IEEE Trans.
on Ind. App., Vol. 25, No. 2, Mar./Apr. 1989.
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Brushless DC Machine (Simple)

Purpose Simple model of brushless DC machine excited by permanent magnets

Library Electrical / Machines

Description The simplified Brushless DC Machine is a model of a permanent magnet syn-
chronous machine with sinusoidal or trapezoidal back EMF.

The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed, the machine is operating in motor mode, oth-
erwise in generator mode. In the component icon, phase a of the stator winding
is marked with a dot.

Electrical System

LR ea(θe,ωm)ia

The back EMF voltages are determined by a shape function ke and the mechan-
ical rotor speed ωm. The shape function is a sinusoidal or an ideal trapezoidal
function scaled with the back EMF constant KE.

ex(θe, ωm) = ke,x(θe) · ωm

Sinusoidal back EMF

/6 5 /6    2

e

k
e,a

-K
E

K
E
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Trapezoidal back EMF

/6 5 /6    2

e

k
e,a

-K
E

K
E

Electromechanical System

The electromagnetic torque is:

Te =
∑

x=a,b,c

ke,xix

Mechanical System

Mechanical rotor speed:

ω̇m =
1

J
(Te − Fωm − Tm)

Mechanical and electrical rotor angle:

θ̇m = ωm

θe = p · θm

Parameters Back EMF shape
Choose between sinusoidal and trapezoidal back EMF.

Back EMF constant
The back EMF constant KE in (Vs).

Stator resistance
The stator resistance R in ohms (Ω).

Stator inductance
The stator inductance L−M in henries (H).

Inertia
Combined rotor and load inertia J in (Nms2).

Friction coefficient
Viscous friction F in (Nms).
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Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical speed ωm,0 in radians per second

(
rad
s

)
.

Initial rotor angle
Initial mechanical rotor angle θm,0 in radians.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A).

Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in amperes (A). Cur-
rents flowing into the machine are considered positive.

Back EMF
The back EMF voltages ea, eb, ec in volts (V).

Stator flux (dq)
The stator flux linkages Ψd and Ψq in the stationary reference frame in
(Vs).

Rotational speed
The rotational speed ωm of the rotor in radians per second

(
rad
s

)
.

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in (Nm).

References
D. Hanselman, "Brushless permanent magnet motor design, 2nd ed.", The

Writers’ Collective, Mar. 2003.

P. Pillay, R. Krishnan, "Modeling, simulation, and analysis of permanent-
magnet motor drives, Part II: The brushless DC motor drive", IEEE Trans.
on Ind. App., Vol. 25, No. 2, Mar./Apr. 1989.

See also For back EMF shapes other than sinusoidal or trapezoidal, and/or if the sta-
tor inductance L is angle dependent, please use the sophisticated model of the
Brushless DC Machine (see page 374). The sophisticated BLDC machine can be
configured as a simple BLDC machine with sinusoidal back EMF if the parame-
ters are converted as follows:

Kc,n = [0]
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Ks,n = [−KE]

L0−M = L−M

Lc,n = [0]

Ls,n = [0]

For machines with sinusoidal back EMF you may also consider to use the Per-
manent Magnet Synchronous Machine (see page 591). The parameters can be
converted as follows provided that the stator inductance L is independent of the
rotor angle:

[Ld Lq] = [L−M L−M ]

φ′
m = KE/p
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C-Script

Purpose Execute custom C code

Library Control / Functions & Tables

Description The C-Script block allows for custom functionality to be implemented in the C
programming language. For a detailed description of C-Scripts see chapter “C-
Scripts” (on page 213).

The C-Script dialog consists of two tabbed panes that are described below.

Setup

Number of inputs, outputs
A positive integer or a vector of positive integers. If you enter a scalar, the
block will have one input or output terminal, and the scalar value deter-
mines the signal width. If you enter a vector, the number of elements de-
termines the number of input or output terminals, and the elements in the
vector determine the signal width of the corresponding terminal. The first
input or output terminal is marked with a dot.

For dynamic sizing set the width of one or more input terminals to -1; the
width will then be determined at simulation start depending on the number
of elements in the signal that is connected to the input port. All occurrences
of -1 in the input and output widths and any other data vector will be ex-
panded to the same width.

Number of cont. states, disc. states, zero-crossings
A positive or zero integer specifying the sizes of the different data vectors
(i.e. continuous and discrete state variables, and zero-crossing signals) that
the C-Script registers with the solver.

Direct feedthrough
A vector of zeros and ones specifying the direct feedthrough flags for the in-
put signals. An input signal has direct feedthrough if you need to access the
current input signal value during the output function call. This has an in-
fluence on the block sorting order and the occurrence of algebraic loops (see
“Block Sorting” on page 31).
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If the C-Script block has one input terminal, a flag in the vector is applied to
the corresponding element of the input signal vector; if the block has multi-
ple input terminals, a flag is applied to the whole signal of the correspond-
ing terminal. You can also specify a single scalar, which applies to all sig-
nals of all input terminals.

Sample time
A scalar specifying the sampling period or an n × 2 matrix specifying the
sampling period(s) and offset(s), in seconds (s). The table below lists the
valid parameter values for the different sample time types. For a detailed
description of the sample time types see “Sample Time” (on page 218).

Type Value

Continuous [0, 0] or 0

Semi-Continuous [0, -1]

Discrete-Periodic [Tp, To] or Tp Tp: Sample period, Tp > 0

To: Sample offset, 0 ≤ To < Tp

Discrete-Variable [-2, 0] or -2

Use terminal-based sample times
If this box is checked, the C-Script block uses different sample times for the
individual input and output terminals. The Sample time parameter must
be a matrix with one row per input terminal (in order) followed by one row
per output terminal (in order) optionally followed by further block sample
times.

Language standard
The language standard used by the compiler. Possible values are C90, C99
and C11. The default is C99.

Enable GNU extensions
If this box is checked, the compiler enables GNU C language features not
found in ISO standard C. These extensions are disabled by default. For
backward compatibility, the extensions are enabled in models saved with
PLECS 4.0 or older in C-Script blocks using the C99 language standard.

Highlight level
The number of levels the highlight is propagated upwards in the component
hierarchy when the C-Script flags a diagnostic message. A highlight level of
0 means that the C-Script block itself will be highlighted. A highlight level
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of 1 means that the component containing the C-Script block will be high-
lighted when the assertion fails, etc.

Enable runtime checks
If this box is checked, protective code is added to guard against access viola-
tions when working with block data (i.e. signal values, states, zero-crossing
signals etc.). The C-Script function calls are also wrapped with protective
code to prevent you from violating solver policies such as accessing input
signals in the output function without enabling direct feedthrough.

It is strongly recommended to leave the runtime checks enabled.

Parameters
A comma-separated list of expressions that are passed as external param-
eters into the C functions. The expressions can reference workspace vari-
ables and must evaluate to scalars, vectors, matrices, 3d-arrays or strings.

Code

The Code pane consists of a combobox for selecting a particular code section
and a text editor that lets you edit the currently selected code section. For de-
tails on the individual sections see “C-Script Functions” (on page 214). The
different macros that you need to use in order to access block data such as in-
put/output signals and states are listed in “C-Script Macros” (on page 230).

If you have made changes to the C code, it will be compiled when you click
on Apply or OK. Any errors or warnings that occur during compilation are
listed in a diagnostic window. Small badges next to the line numbers indicate
the problematic code lines. If you move the mouse cursor near such a badge, a
tooltip with the diagnostics for that line will appear.

A “Find” dialog for finding and optionally replacing certain text is available
from the context menu or by pressing Ctrl-F. The dialog has an option to search
the current code section only (“This section") or all code sections of the C-Script
(“All sections").

Probe Signals Input i
The ith input signal.

Output i
The ith output signal.
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Capacitor

Purpose Ideal capacitor

Library Electrical / Passive Components

Description This component provides one or more ideal capacitors between its two electrical
terminals. If the component is vectorized, a coupling can be modeled between
the internal capacitors. Capacitors may be switched in parallel only if their mo-
mentary voltages are equal.

See section “Configuring PLECS” (on page 124) for information on how to
change the graphical representation of capacitors.

Note A capacitor may not be connected in parallel with an ideal voltage
source. Doing so would create a dependency between an input variable (the
source voltage) and a state variable (the capacitor voltage) in the underlying
state-space equations.

Parameters Capacitance
The value of the capacitor, in farads (F). All finite positive and negative val-
ues are accepted, including 0. The default is 100e-6.

In a vectorized component, all internal capacitors have the same value if the
parameter is a scalar. To specify the capacitances individually use a vector
[C1 C2 . . . Cn] . The length n of the vector determines the component’s width:

i1

i2
...

in

 =


C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · Cn

 ·



d
dtv1

d
dtv2

...
d
dtvn


In order to model a coupling between the internal capacitors enter a square
matrix. The size n of the matrix corresponds to the width of the component:
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
i1

i2
...

in

 =


C1 C1,2 · · · C1,n

C2,1 C2 · · · C2,n

...
...

. . .
...

Cn,1 Cn,2 · · · Cn

 ·



d
dtv1

d
dtv2

...
d
dtvn


The capacitance matrix must be invertible, i.e. it may not be singular.

Initial voltage
The initial voltage of the capacitor at simulation start, in volts (V). This
parameter may either be a scalar or a vector corresponding to the width of
the component. The positive pole is marked with a “+”. The initial voltage
default is 0.

Probe Signals Capacitor voltage
The voltage measured across the capacitor, in volts (V). A positive voltage
is measured when the potential at the terminal marked with “+” is greater
than the potential at the unmarked terminal.

Capacitor current
The current flowing through the capacitor, in amperes (A).
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Clock

Purpose Provide current simulation time

Library Control / Sources

Description The Clock block outputs the current simulation time.

Probe Signal Output
The time signal.

386



Combinatorial Logic

Combinatorial Logic

Purpose Use binary input signals to select one row from truth table

Library Control / Logical

Description The Combinatorial Logic block interprets its input as a vector of boolean values
and outputs a row from the Truth table according to the input values. For an
input vector of width n, the truth table must have 2n rows and the row number
is calculated as r = 1 +

∑
i 2

n−iui where ui = 1 if the ith input signal is greater
than 0, ui = 0 otherwise, i.e. the first element of the input vector is interpreted
as the most significant bit and the nth element as the least significant bit.

For example, when using a truth table
1.5 0

4 2.5

3 1.5

5.5 0


the output is:

Input Output

[0 0] [1.5 0]

[0 1] [4 2.5]

[1 0] [3 1.5]

[1 1] [5.5 0]

Parameter Truth table
The truth table used to calculate the output. The table must have 2n rows,
and n determines the width of the input signal. The number of columns de-
termines the width of the output signal.

Probe Signals Input
The input signals.

Output
The output signals.
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Comparator

Purpose Compare two input signals with minimal hysteresis

Library Control / Discontinuous

Description The Comparator compares two input signals. If the non-inverting input is
greater than the inverting input, the output is 1. The output is set to 0 if the
non-inverting input is less than the inverting one. The output does not change
if both inputs are equal.

Probe Signals Input
The input signals.

Output
The output signals.
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Compare to Constant

Purpose Compare the input signal to a constant threshold

Library Control / Logical

Description The Compare to Constant block compares the input signal to a threshold value.
If the comparison is true, the block outputs 1, otherwise 0. The input signal is
the first argument and the threshold value the second argument for the com-
parison operator.

Parameters Relational operator
Chooses which comparison operation is applied to the input signal and the
threshold value. Available operators are
• equal (==),
• unequal (∼=),
• less (<),
• less or equal (<=),
• greater or equal (>=),
• greater (>).

Threshold value
The value to which the input signal is compared.

Probe Signals Input
The input signals.

Output
The output signal.
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Configurable Subsystem

Purpose Provide subsystem with exchangeable implementations

Library System

Description A configurable subsystem is a subsystem that has multiple, exchangeable con-
figurations. Each subsystem configuration has its own schematic diagram.
All subsystem configurations of the configurable subsystem share the same in-
put, output and physical terminals. Once a port element has been added to one
of the internal schematics it becomes available in all other internal schematics.
By selecting Look under mask from the Subsystem submenu of the Edit
menu or the block’s context menu the schematic view of the configurable sub-
system is opened. The schematic for each configuration can be accessed by the
tabs on top of the schematic view. New configurations can be added and re-
moved from the context menu of the tab bar, accessible by right-click. A double-
click on a configuration tab allows for the corresponding configuration to be re-
named.

Note A subsystem (see the Subsystem block on page 695) can be converted to
a configurable subsystem by selecting Convert to configurable subsystem
from the Subsystem submenu of the Edit menu or the block’s context menu.

Parameters Configuration
The name of the internal schematic that is used during simulation. The
variable Configuration can be used in the mask initialization commands
to check the current configuration. It contains an integer value starting at 1
for the first configuration.

Additional parameters for the Configurable Subsystem can be created by mask-
ing the block (see “Mask Parameters” (on page 76) for more details).

Probe Signals Probe signals for the Configurable Subsystem can be created by masking the
block (see “Mask Probe Signals” (on page 81) for more details).
Only the probed components from the current configuration are used during
simulation. To ensure that a Probe signal behaves the same for all configura-
tions, it should contain the same number of component signals from each sub-
system in the same order. If a configuration does not provide a specific signal, a
dummy component (e.g. a Constant block on page 391) can be used.
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Constant

Purpose Generate constant signal

Library Control / Sources

Description

1

The Constant block outputs a constant signal.

The constant value is displayed in the block if it is large enough, otherwise a
default text is shown. To resize the block, select it, then drag one of its selection
handles.

Parameter Value
The constant value. This parameter may either be a scalar or a vector defin-
ing the width of the component. The default value is 1.

Output data type
The data type of the output signal. See “Data Types” (on page 43).

Probe Signal Output
The constant signal.
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Constant Heat Flow

Purpose Generate constant heat flow

Library Thermal / Sources

Description The Constant Heat Flow generates a constant heat flow between the two
thermal ports. The direction of a positive heat flow through the component is
marked with an arrow.

Parameter Heat flow
The magnitude of the heat flow, in watts (W). The default is 1.

Probe Signal Heat flow
The heat flow in watts (W).
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Constant Temperature

Purpose Provide constant temperature

Library Thermal / Sources

Description The Constant Temperature generates a constant temperature difference be-
tween its two thermal connectors or between the thermal connector and the
thermal reference. The temperature difference is considered positive if the ter-
minal marked with a “+” has a higher temperature.

Parameter Temperature
The temperature difference generated by the component, in degrees Celsius
(◦C). The default is 0.

Probe Signal Temperature
The temperature difference in degrees Celsius (◦C).
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Continuous PID Controller

Purpose Implementation of a continuous-time controller (P, I, PI, PD or PID)

Library Control / Continuous

Description

Continuous	PID

e uPID(s)

This block implements a highly configurable continuous-time controller with
two different anti-windup mechanisms, see subsection Anti-windup meth-
ods. The output signal is a weighted sum of at maximum three types of control
actions: proportional action, integral action and derivative action. A practical
implementation of the derivative action needs an additional first-order low-pass
filter. The selection of the filter time constant Kf is a trade-off between filter-
ing noise and avoiding interactions with the dominant PID controller dynamics.
This leads to the transfer function below:

CPID(s) =
U(s)

E(s)
= Kp +

Ki

s
+

Kds
1
Kf

s+ 1
.

+++

Kp

Proportional	Gain

Kd

Derivative	Gain

Ki

Integral	Gain

1/s

+−

1/s

Kf

Derivative	filter	coefficient
ue

Implementation of a PID controller in parallel form

Anti-windup Methods

Set-point changes together with actuator saturation limits can lead to the in-
tegrator windup effect and degraded controller performance. To avoid this phe-
nomenon, this component implements the following two mechanisms.
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Saturation

+++

Kp

Proportional	Gain

Kd

Derivative	Gain

Ki

Integral	Gain

1/s++ +−

+−

1/s

Kf

Derivative	filter	coefficient

Kb

Back-calculation	gain

ue u'

Anti-windup scheme with back-calculation

Back-Calculation

The Back-calculation method changes the integral action when the controller
output is in saturation. The integral term is reduced/increased when the con-
troller output is higher/lower than the upper/lower saturation limit. This is
done by feeding back the difference between the saturated and the unsaturated
controller output. The value of the back-calculation gain Kbc determines the
rate at which the integrator is reset and is therefore crucial for performance of
the anti-windup mechanism. A common choice for this back-calculation gain is:

Kbc =

√
Ki

Kd
.

However, this rule can only be applied to full PID controllers. In the case of a PI
controller, where Kd = 0, it is suggested that

Kbc =
Ki

Kp
.

Conditional Integration

The Conditional integration method stops the integration when the con-
troller output saturates and the control error e and the control variable u have
the same sign. This means, the integral action is still applied if it helps to push
the controller output out of saturation.
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Saturation

+++
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Anti-windup scheme with conditional integration

Anti-Windup with External Saturation

If the saturation is placed externally to the PID controller block, i.e. Satura-
tion is set to external, one can still use the above described anti-windup meth-
ods. To feedback the saturated output of the external Saturation block (see page
659) an additional subsystem port u∗ is made visible if the Saturation param-
eter is set to external and the Anti-windup method parameters is set to an
option other than none, see the figure below.

Continuous	PID

e u
u*

PID(s)

Saturation

REF
Setpoint

+−

Scope

nnsn+..+n0
dnsn+..+d0
Plant

Transfer	Fcn

++

Feedforward

+−

Anti-windup scheme with external saturation

Parameters
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Basic

Controller type
Specifies the controller type. The controller can be of type P, I, PI, PD or PID.

Parameter source
Specifies whether the controller parameters are provided via the mask pa-
rameters (internal) or via input signals (external).

Proportional gain Kp
The proportional gain of the controller. This parameter is shown only if the
Controller type parameter is set to P, PI, PD or PID and the Parameter
source parameter is set to internal.

Integral gain Ki
The integral gain of the controller. This parameter is shown only if the
Controller type parameter is set to I, PI or PID and the Parameter
source parameter is set to internal.

Derivative gain Kd
The derivative gain of the controller. This parameter is shown only if the
Controller type parameter is set to PD or PID and the Parameter source
parameter is set to internal.

Derivative filter coefficient Kf
The filter coefficient which specifies the pole location of the first-order fil-
ter in the derivative term. This parameter is shown only if the Controller
type parameter is set to PD or PID and the Parameter source parameter is
set to internal.

External reset
The behavior of the external reset input. The values rising, falling and
either cause a reset of the integrator on the rising, falling or both edges of
the reset signal. A rising edge is detected when the signal changes from 0
to a positive value, a falling edge is detected when the signal changes from
a positive value to 0. If level is chosen, the output signal keeps the initial
value while the reset input is not 0. Only the integrator in the integral ac-
tion is reset.

Initial condition source
Specifies wheter the initial condition is provided via the Initial condition
parameter (internal) or via an input signal (external).

Initial condition
The initial condition of the integrator in the integral action. The value may
be a scalar or a vector corresponding to the implicit width of the component.
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This parameter is shown only if the Initial condition source parameter is
set to internal.

Anti-Windup

Saturation
Specifies if the internally placed saturation (internal) is used or if the user
wants to place the saturation externally (external) to the PID Controller
block (see page 394). If external is selected, the internal Saturation block
(see page 659) is not active.

Saturation limits
Specifies whether the saturation limits are provided via the mask parame-
ters (constant) or via input signals (variable).

Upper saturation limit
An upper limit for the output signal. If the value is inf, the output signal is
unlimited. If input and output are vectorized, signals a vector can be used.
The number of elements in the vector must match the number of input sig-
nals. This parameter is shown only if the Saturation parameter is set to
internal and the Saturation limits parameter is set to constant.

Lower saturation limit
A lower limit for the output signal. If the value is -inf, the output signal is
unlimited. If input and output are vectorized, signals a vector can be used.
The number of elements in the vector must match the number of input sig-
nals. This parameter is shown only if the Saturation parameter is set to
internal and the Saturation limits parameter is set to constant.

Anti-Windup method
Specifies the method to avoid windup of the integral action. See Anti-
windup methods above.

Back-calculation gain
The gain of the back-calculation anti-windup method. This parameter
is shown only of the Anti-windup method parameter is set to Back-
calculation.

Probe Signals Proportional action
Proportion of the proportional action of the controller output signal.

Integral action
Proportion of the integral action of the controller output signal.

Derivative action
Proportion of the derivative action of the controller output signal.
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Controller output before saturation
The input signal of the saturation block.

Controller output after saturation
The output signal of the saturation block.

References
A. Visioli, “Practical PID Control - Advances in industrial control”, Springer-

Verlag, 2006.
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Controlled Heat Flow

Purpose Generate variable heat flow

Library Thermal / Sources

Description The Controlled Heat Flow generates a variable heat flow between the two
thermal ports. The direction of a positive heat flow through the component is
marked with an arrow. The momentary heat flow is determined by the signal
fed into the input of the component.

Parameter Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of thermal measurements, PLECS will eliminate the input variable
from the state-space equations and substitute it with the corresponding out-
put variables. The default is off.

Probe Signal Heat flow
The heat flow in watts (W).
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Controlled Temperature

Purpose Provide variable temperature

Library Thermal / Sources

Description The Controlled Temperature generates a variable temperature difference be-
tween its two thermal connectors or between the thermal connector and the
thermal reference. The temperature difference is considered positive if the ter-
minal marked with a “+” has a higher temperature. The momentary tempera-
ture difference is determined by the signal fed into the input of the component.

Parameter Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of thermal measurements, PLECS will eliminate the input variable
from the state-space equations and substitute it with the corresponding out-
put variables. The default is off.

Probe Signal Temperature
The temperature difference in degrees Celsius (◦C).
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Current Source (Controlled)

Purpose Generate variable current

Library Electrical / Sources

Description The Controlled Current Source generates a variable current between its two
electrical terminals. The direction of a positive current through the component
is marked with an arrow. The momentary current is determined by the signal
fed into the input of the component.

Note A current source may not be open-circuited or connected in series to an
inductor or any other current source.

Parameters Discretization behavior
Specifies whether a zero-order hold or a first-order hold is applied to the in-
put signal when the model is discretized. For details, see “Physical Model
Discretization” (on page 35).

The option Non-causal zero-order hold applies a zero-order hold with the
input signal value from the current simulation step instead of the previous
one. This option can be used to compensate for a known delay of the input
signal.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of electrical measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Probe Signals Source current
The source current in amperes (A).

Source voltage
The voltage measured across the source, in volts (V).

Source power
The instantaneous output power of the source, in watts (W).
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Current Source AC

Purpose Generate sinusoidal current

Library Electrical / Sources

Description The AC Current Source generates a sinusoidal current between its two electri-
cal terminals. The direction of a positive current is marked with an arrow. The
momentary current i is determined by the equation:

i = A · sin(ω · t+ φ)

where t is the simulation time.

If a variable-step solver is used, the solver step size is automatically limited to
ensure that a smooth current waveform is produced.

Note A current source may not be open-circuited or connected in series to an
inductor or any other current source.

Parameters Each of the following parameters may either be a scalar or a vector correspond-
ing to the implicit width of the component:

Amplitude
The amplitude A of the current, in amperes (A). The default is 1.

Frequency
The angular frequency ω, in radians per second

(
rad
s

)
. The default is

2*pi*50 which corresponds to 50Hz.

Phase
The phase shift φ, in radians. The default is 0.

Probe Signals Source current
The source current in amperes (A).

Source voltage
The voltage measured across the source, in volts (V).

Source power
The instantaneous output power of the source, in watts (W).
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Current Source DC

Purpose Generate constant current

Library Electrical / Sources

Description The DC Current Source generates a constant current between its two electrical
terminals. The direction of a positive current through the component is marked
with an arrow.

Note A current source may not be open-circuited or connected in series to an
inductor or any other current source.

Parameter Current
The magnitude of the constant current, in amperes (A). This parameter
may either be a scalar or a vector defining the width of the component. The
default value is 1.

Probe Signals Source current
The source current in amperes (A).

Source voltage
The voltage measured across the source, in volts (V).

Source power
The instantaneous output power of the source, in watts (W).

404



D Flip-flop

D Flip-flop

Purpose Implement edge-triggered flip-flop

Library Control / Logical

Description The D flip-flop sets its output Q to the value of its input D when an edge on the
clock input is detected. The behavior is shown in the following truth table:

D Clk Q /Q

0 0 No change No change

0 1 No change No change

1 0 No change No change

1 1 No change No change

0 Triggering edge 0 1

1 Triggering edge 1 0

The input D is latched, i.e. when a triggering edge in the clock signal is de-
tected the value of D from the previous simulation step is used to set the out-
put. In other words, D must be stable for at least one simulation step before the
flip-flop is triggered by the clock signal.

Parameters Trigger edge
The direction of the edge on which the D input is read.

Initial state
The state of the flip-flop at simulation start.

Probe Signals D
The input signal D.

Clk
The clock input signal.

Q
The output signals Q.

/Q
The output signals /Q.
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Data Type

Purpose Cast the input signal to the specified data type.

Library Control / Math

Description This block casts the input signal to the specified data type. If the input signal
already has the specified data type, this block does nothing.

Parameters Data type
The data type of the output signal. See “Data Types” (on page 43).

Data type overflow handling
Specifies how a data type overflow is handled. See “Data Types” (on page
43). This parameter only appears if Data type is not set to a floating-point
data type.
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DC Machine

Purpose Simple model of DC machine

Library Electrical / Machines

Description The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed the machine is operating in motor mode, oth-
erwise in generator mode. In the component icon, the positive poles of armature
and field winding are marked with dots.

Electrical System

LaRa

Ea

Lf Rf
va

+

−

+

−
vf

if

ia

Electromagnetic torque:

Te = Laf · if · ia
Induced voltage of the armature winding:

Ea = Laf · if · ωm

Mechanical System

ω̇m =
1

J
(Te − Fωm − Tm)

Parameters Armature resistance
Armature winding resistance Ra in ohms (Ω).

Armature inductance
Armature winding inductance La in henries (H).

Field resistance
Field winding resistance Rf in ohms (Ω).

407



15 Component Reference

Armature inductance
Field winding inductance Lf in henries (H).

Field-armature mutual inductance
Field-armature mutual inductance Laf in henries (H).

Inertia
Combined rotor and load inertia J in (Nms2).

Friction coefficient
Viscous friction F in (Nms).

Initial rotor speed
Initial mechanical speed ωm,0 in radians per second

(
rad
s

)
.

Initial rotor position
Initial mechanical rotor angle θm,0 in radians.

Initial armature current
Initial current ia,0 in the armature winding in amperes (A).

Initial field current
Initial current if,0 in the field winding in amperes (A).

Probe Signals Armature current
The current ia in the armature winding, in amperes (A).

Field current
The current if in the field winding, in amperes (A).

Rotational speed
The rotational speed ωm of the rotor in radians per second

(
rad
s

)
.

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in (Nm).
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Dead Zone

Purpose Output zero while input signal is within dead zone limits

Library Control / Discontinuous

Description The Dead Zone block outputs zero while the input is within the limits of the
dead zone. When the input signal is outside of the dead zone limits, the output
signal equals the input signal minus the nearest dead zone limit.

Parameters Lower dead zone limit
The lower limit of the dead zone.

Upper dead zone limit
The upper limit of the dead zone.

Probe Signals Input
The block input signal.

Output
The block output signal.
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Delay

Purpose Delay input signal by given number of samples

Library Control / Discrete

Description The Delay block delays the input signal by N sample periods.

Parameters Delay order
The number of delay periods applied to the input signal.

Initial condition
A scalar, vector or matrix that defines the initial values of the internal
states. The number of rows must be 1 or equal to the width of the input sig-
nal; the number of columns must be 1 or equal to the delay order. Scalar
dimensions are expanded as needed.

Sample time
A scalar specifying the sampling period or a two-element vector specify-
ing the sampling period and offset, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).

Probe Signals Input
The input signal.

Output
The delayed output signal.
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Diode

Purpose Ideal diode with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The Diode is a semiconductor device controlled only by the voltage across it and
the current through the device. The Diode model is basically an ideal switch
that closes when the voltage between anode and cathode becomes positive and
opens when the current through the component becomes negative. In addition
to the ideal switch, a forward voltage and an on-resistance may be specified.
These parameters may either be scalars or vectors corresponding to the implicit
width of the component. If unsure set both values to 0.

Parameters The following parameters may either be scalars or vectors corresponding to the
implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
diode is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on page
131). If no thermal description is given, the losses are calculated based on
the voltage drop von = Vf +Ron · i.

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).
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Note Under blocking conditions the diode voltage is negative. Hence you
should define the turn-on and turn-off loss tables for negative voltages. See
chapter “Diode Losses” (on page 160) for more information.

Probe Signals Diode voltage
The voltage measured between anode and cathode.

Diode current
The current through the diode flowing from anode to cathode.

Diode conductivity
Conduction state of the internal switch. The signal outputs 0 when the
diode is blocking, and 1 when it is conducting.

Diode junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

Diode conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Diode switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.
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Diode with Reverse Recovery

Purpose Dynamic diode model with reverse recovery

Library Electrical / Power Semiconductors

Description This component is a behavioral model of a diode which reproduces the effect
of reverse recovery. This effect can be observed when a forward biased diode
is rapidly turned off. It takes some time until the excess charge stored in the
diode during conduction is removed. During this time the diode represents a
short circuit instead of an open circuit, and a negative current can flow through
the diode. The diode finally turns off when the charge is swept out by the re-
verse current and lost by internal recombination.

Note

• Due to the small time-constant introduced by the turn-off transient a stiff
solver is recommended for this device model.

• If multiple diodes are connected in series, the off-resistance may not be infi-
nite.

The following figure illustrates the relationship between the diode parameters
and the turn-off current waveform. If0 and dIr/dt denote the continuous forward
current and the rated turn-off current slope under test conditions. The turn-off
time trr is defined as the period between the zero-crossing of the current and
the instant when it becomes equal to 10% of the maximum reverse current Irrm.
The reverse recovery charge is denoted Qrr. Only two out of the three param-
eters trr, Irrm, and Qrr need to be specified since they are linked geometrically.
The remaining parameter should be set to 0. If all three parameters are given,
Qrr is ignored.

The equivalent circuit of the diode model is shown below. It is composed of a
resistance, and inductance, and a controlled current source which is linearly
dependent on the inductor voltage. The values of these internal elements are
automatically calculated from the diode parameters.

Parameters Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
diode is conducting. The default is 0.
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On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Off-resistance
The resistance Roff of the blocking device, in ohms (Ω). The default is 1e6.
This parameter may be set to inf unless multiple diodes are connected in
series.

Continuous forward current
The continuous forward current If0 in amperes (A) under test conditions.

Current slope at turn-off
The turn-off current slope dIr/dt in

(
A
s

)
under test conditions.

Reverse recovery time
The turn-off time trr in seconds (s) under test conditions.

Peak recovery current
The absolute peak value of the reverse current Irrm in amperes (A) under
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test conditions.

Reverse recovery charge
The reverse recovery charge Qrr in coulombs (C) under test conditions. If
both trr and Irrm are specified, this parameter is ignored.

Lrr
This inductance acts as a probe measuring the di/dt. It should be set to a
very small value, in henries (H). The default is 10e-10.

Probe Signals Diode voltage
The voltage measured between anode and cathode.

Diode current
The current through the diode flowing from anode to cathode.

Diode conductivity
Conduction state of the internal switch. The signal outputs 0 when the
diode is blocking, and 1 when it is conducting.

References
A. Courtay, "MAST power diode and thyristor models including automatic pa-

rameter extraction", SABER User Group Meeting Brighton, UK, Sept.
1995.

415



15 Component Reference

Diode Rectifier (3ph)

Purpose 3-phase diode rectifier

Library Electrical / Converters

Description Implements a three-phase rectifier based on the Diode model (see page 411).
The electrical circuit for the rectifier is given below:

D2

a

b

c

D1

D4

D3

D6

D5

Parameters For a description of the parameters see the documentation of the Diode (on page
411).

Probe Signals The Diode Rectifier provides six probe signals, each a vector containing the ap-
propriate quantities of the six individual diodes: voltage, current, conductivity,
conduction loss and switching loss. The vector elements are ordered according
to the natural sequence of commutation.
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Discrete Integrator

Purpose Discrete integration of the input signal

Library Control / Discrete

Description The Discrete Integrator block outputs the integral of its input signal at the cur-
rent sample time step. The integrator state may saturate at an upper and lower
limit, or it can be wrapped between two limits. It can be reset to its initial value
by an external trigger signal.

Integration Methods

You can choose between three integration methods using the Integration
method parameter: Forward Euler, Backward Euler and Trapezoidal. The out-
put and update equations for these methods are listed below:

Forward Euler

First simulation step:

y[0] = x[0]

x[1] = y[0]

Subsequent simulation steps:

y[k] = x[k] + T · u[k − 1]

x[k + 1] = y[k]

Backward Euler

First simulation step:

y[0] = x[0]

x[1] = y[0]

Subsequent simulation steps:

y[k] = x[k] + T · u[k]

x[k + 1] = y[k]
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Trapezoidal

First simulation step:

y[0] = x[0]

x[1] = y[0]

Subsequent simulation steps:

y[k] = x[k] +
T

2
· (u[k − 1] + u[k])

x[k + 1] = y[k]

In the above equations, if the block has a fixed-step discrete sample time (ei-
ther inherited or specified explicitly), T equals the sample period. If the block
is executed within a triggered subsystem, T equals the time span between the
previous and the current trigger.

The first simulation step refers to the first time the block executes after a simu-
lation has been started from the initial block parameters (as opposed to a stored
system state) or – if the block is executed within an enabled subsystem – after
the block has been enabled. If the block is executed within a triggered subsys-
tem, the first execution after simulation start is always treated as a first sim-
ulation step even if the simulation is restarted from a stored system state be-
cause the value of T cannot be determined in this case.

Note If the Backward Euler or Trapezoidal integration method is used, the
input signal has direct feedthrough on the output signal.

Reset Behavior

The integrator may be reset to its initial condition by an external input signal.
This is controlled by the External reset parameter. The available options are
rising/falling/either edge or level as described below:
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Rising Edge Reset

The block output and state are reset to the initial condition if the current reset
input value is non-zero and the previous reset input value was zero.

Falling Edge Reset

The block output and state are reset to the initial condition if the current reset
input value is zero and the previous reset input value was non-zero.

Either Edge Reset

The block output and state are reset to the initial condition if the current re-
set input value is non-zero and the previous reset input value was zero or if the
current reset input value is zero and the previous reset input value was non-
zero.

Level Reset

The block output and state are reset to and held at the initial condition while
the current reset input value is non-zero.

Note Both the external reset input and the initial condition input have direct
feedthrough on the output signal. Therefore, feeding back the output signal to
create the reset signal or an initial value will create an algebraic loop. This can
be avoided by using the state port instead.

Parameters External reset
The behaviour of the external reset input. See Reset Behavior above.

Initial condition source
Specifies whether the initial condition is provided via the Initial condition
parameter (internal) or via an input signal (external).

Initial condition
The initial condition of the integrator. The value may be a scalar or a vector
corresponding to the width of the component. This parameter is shown only
if the Initial condition source parameter is set to internal.
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Show state port
Specifies whether to show an additional state output port. The state port is
updated at a slightly different point in the block execution order (i.e. before
the reset and initial condition inputs are evaluated) and may therefore be
used to calculate an input signal for the external reset input or the initial
condition input.

Enable wrapping
When set to on, the integrator state is wrapped between the Upper wrap-
ping limit and Lower wrapping limit parameters. The default is off.
Note that wrapping is mutually exclusive with saturation.

Upper saturation limit
An upper limit for the integrator state. If the value is inf, the state is un-
limited. This parameter is visible only if Enable wrapping is set to off.

Lower saturation limit
A lower limit for the integrator state. If the value is -inf, the state is un-
limited. This parameter is visible only if Enable wrapping is set to off.

Upper wrapping limit
The upper wrapping limit for the integrator state. When the state exceeds
the upper limit, it is wrapped to the lower limit. This parameter is visible
only if Enable wrapping is set to on.

Lower wrapping limit
The lower wrapping limit for the integrator state. When the state exceeds
the lower limit, it is wrapped to the upper limit. This parameter is visible
only if Enable wrapping is set to on.

Integration method
The method used to integrate the input signal. See Integration Methods
above.

Sample time
A scalar specifying the sampling period or a two-element vector specify-
ing the sampling period and offset, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).

Probe Signal State
The internal state of the integrator.
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Discrete Mean Value

Purpose Calculate running mean value of input signal

Library Control / Discrete

Description This block calculates the running mean of the input signal based on discrete
samples. The sample time and the number of samples can be specified. The
block is implemented with a shift register. The output of the block is the sum
of all register values divided by the number of samples.

Parameters Initial condition
The initial condition describes the input signal before simulation start. If
the input is a scalar signal, the parameter can either be a scalar or a col-
umn vector. The number of elements in the vector must match the value
of the parameter Number of samples minus 1. If input and output are
vectorized signals, a matrix can be used. The number of rows must be 1 or
match the number of input signals. The default value of this parameter is 0.

Sample time
A scalar specifying the sampling period or a two-element vector specify-
ing the sampling period and offset, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).

Number of samples
The number of samples used to calculate the mean value.

Probe Signals Input
The input signal.

Mean
The output signal, i.e. the computed mean value.
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Discrete PID Controller

Purpose Implementation of a discrete-time controller (P, I, PI, PD or PID)

Library Control / Discrete

Description

Discrete	PID

e uPID(z)

This block implements a highly configurable discrete-time controller with two
different anti-windup mechanisms. The output signal is a weighted sum of at
maximum three types of control actions: proportional action, integral action
and derivative action. The derivative action is filtered with a first-order low-

+++
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Derivative	filter	coefficient
ue
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Implementation of a discrete PID controller in parallel form

pass filter. This filter is always integrated with the Forward Euler method. The
selection of the filter time constant Kf is a trade-off between filtering noise and
avoid interactions with the dominant PID controller dynamics. This leads to the
discrete transfer function below:

CPID(z) =
U(z)

E(z)
= Kp +Kiq(z) +Kd

Kf

1 +Kf
T

z−1

.

If Forward Euler is selected in the Integration Method parameter, then

q(z) =
T

z − 1
,

for Backward Euler

q(z) =
Tz

z − 1
,
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and for Trapezoidal

q(z) =
T

2

z + 1

z − 1
.

All other block parameters are explained in the continuous version of the PID
controller (see page 394).

Parameters
Basic

Controller type
Specifies the controller type. The controller can be of type P, I, PI, PD or PID.

Parameter source
Specifies whether the controller parameters are provided via the mask pa-
rameters (internal) or via input signals (external).

Proportional gain Kp
The proportional gain of the controller. This parameter is shown only if the
Controller type parameter is set to P, PI, PD or PID and the Parameter
source parameter is set to internal.

Integral gain Ki
The integral gain of the controller. This parameter is shown only if the
Controller type parameter is set to I, PI or PID and the Parameter
source parameter is set to internal.

Derivative gain Kd
The derivative gain of the controller. This parameter is shown only if the
Controller type parameter is set to PD or PID and the Parameter source
parameter is set to internal.

Derivative filter coefficient Kf
The filter coefficient which specifies the pole location of the first-order filter
in the derivative term.

External reset
The behavior of the external reset input. The values rising, falling and
either cause a reset of the integrator on the rising, falling or both edges of
the reset signal. A rising edge is detected when the signal changes from 0
to a positive value, a falling edge is detected when the signal changes from
a positive value to 0. If level is chosen, the output signal keeps the initial
value while the reset input is not 0. Only the integrator in the integral ac-
tion is reset.
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Initial condition source
Specifies wheter the initial condition is provided via the Initial condition
parameter (internal) or via an input signal (external).

Initial condition
The initial condition of the integrator in the integral action. The value may
be a scalar or a vector corresponding to the implicit width of the component.
This parameter is shown only if the Initial condition source parameter is
set to internal.

Anti-Windup

Saturation
Specifies if the internally placed saturation (internal) is used or if the user
wants to place the saturation externally (external). If external is selected,
the internal Saturation block (see page 659) is not active.

Saturation limits
Specifies whether the saturation limits are provided via the mask parame-
ters (constant) or via input signals (variable).

Upper saturation limit
An upper limit for the output signal. If the value is inf, the output signal is
unlimited. If input and output are vectorized signals, a vector must be used.
The number of elements in the vector must match the number of input sig-
nals. This parameter is shown only if the Saturation parameter is set to
internal and the Saturation limits parameter is set to constant.

Lower saturation limit
A lower limit for the output signal. If the value is -inf, the output signal is
unlimited. If input and output are vectorized signals, a vector must be used.
The number of elements in the vector must match the number of input sig-
nals. This parameter is shown only if the Saturation parameter is set to
internal and the Saturation limits parameter is set to constant.

Anti-Windup method
Specifies the method to avoid windup of the integral action. See also the
Anti-windup Methods in the PID Controller block (see page 394).

Back-calculation gain
The gain of the back-calculation anti-windup method. This parameter
is shown only of the Anti-windup method parameter is set to Back-
calculation.
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Discrete-time settings

Integration method
The method used to integrate the input signal. This parameter affects the
integrator of the integral action only. Please note, that the first-order low-
pass filter in the derivative action is always integrated using the Forward
Euler method. See also the Integration Methods in the Discrete Integra-
tor Block (see page 417).

Sample time
A scalar specifying the sampling period or a two-element vector specify-
ing the sampling period and offset, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).

Probe Signals Proportional action
Proportion of the proportional action of the controller output signal.

Integral action
Proportion of the integral action of the controller output signal.

Derivative action
Proportion of the derivative action of the controller output signal.

Controller output before saturation
The input signal of the saturation block.

Controller output after saturation
The output signal of the saturation block.

References
A. Visioli, “Practical PID Control - Advances in industrial control”, Springer-

Verlag, 2006.
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Discrete State Space

Purpose Implement discrete time-invariant system as state-space model

Library Control / Discrete

Description The Discrete State Space block models a state space system of the form
xi+1 = Axi + Bui, yi = Cxi + Dui, where xi is the state vector at sample time
step i, u is the input vector, and y is the output vector.

Parameters A,B,C,D
The coefficient matrices for the discrete state space system. The dimensions
for the coefficient matrices must conform to the dimensions shown in the
diagram below:

where n is the number of states, m is the width of the input signal and p is
the width of the output signal.

Sample time
A scalar specifying the sampling period or a two-element vector specify-
ing the sampling period and offset, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).

Initial condition
A vector of initial values for the state vector, x.

Probe Signals Input
The input vector, u.

Output
The output vector, y.
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Discrete Transfer Function

Purpose Model discrete system as transfer function

Library Control / Discrete

Description The Discrete Transfer Function models a discrete time-invariant system that is
expressed in the z-domain:

Y (z)

U(z)
=

nnz
n + · · ·+ n1z + n0

dnzn + · · ·+ d1z + d0

The transfer function is displayed in the block if it is large enough, otherwise a
default text is shown. To resize the block, select it, then drag one of its selection
handles.

Parameters Numerator coefficients
A vector of the z term coefficients [nn . . . n1, n0] for the numerator, written in
descending order of powers of z. For example, the numerator z3 + 2z would
be entered as [1,0,2,0].
The output of the Transfer Function is vectorizable by entering a matrix for
the numerator.

Denominator coefficients
A vector of the z term coefficients [dn . . . d1, d0] for the denominator, written
in descending order of powers of z.

Note The order of the denominator (highest power of z) must be greater than
or equal to the order of the numerator.

Sample time
A scalar specifying the sampling period or a two-element vector specify-
ing the sampling period and offset, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).

Initial condition
The initial condition vector of the internal states of the Transfer Function in
the form [xn . . . x1, x0]. The initial conditions must be specified for the con-
troller normal form, depicted below for the transfer function:

Y (z)

U(z)
=

n2z
2 + n1z + n0

d2z2 + d1z + d0
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a1

a0

a2

b0

b1

b2z-1
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x1 x0 Y(z)U(z)
z-1

ZOH

where

bi = di
dn

for i < n

bn = 1
dn

ai = ni − nndi
dn

for i < n

an = nn

For the normalized transfer function (with nn = 0 and dn = 1) this simplifies
to bi = di and ai = ni.

Probe Signals Input
The input signal.

Output
The output signal.
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Display

Purpose Display signal values in the schematic

Library System

Description The display block shows the numeric value of the input signal. The value is up-
dated while the simulation is running.

For signals with a fixed-point data type the letters fx are displayed to the left of
the signal’s value. When clicking on fx the displayed value is toggled between
the real representation and the raw underlying integer value.

Parameters Notation
This parameter determines if the value of the signal is displayed in decimal
or scientific notation, e.g. “0.123” or “1.23e-1”, respectively.

Precision
The precision determines the number of digits after the dot. The allowed
range of this parameter is 0 to 16.
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DLL

Purpose Interface with externally generated dynamic-link library

Library Control / Functions & Tables

Description The DLL block allows you to load a user generated DLL. The DLL may be im-
plemented in any programming language on any development environment
that the system platform supports. For convenience, all code snippets in this
description are given in C.

The DLL must supply two functions, plecsSetSizes and plecsOutput. Addi-
tionally it may implement the functions plecsStart and plecsTerminate.

The complete DLL interface is described in the file in-
clude/plecs/DllHeader.h in the PLECS installation directory. This file
should be included when implementing the DLL.

void plecsSetSizes(struct SimulationSizes* aSizes)

This function is called once during the initialization of a new simulation.

The parameter struct SimulationSizes is defined as follows:

struct SimulationSizes {
int numInputs;
int numOutputs;
int numStates;
int numParameters;

};

In the implementation of plecsSetSizes the DLL has to set all the fields of the
supplied structure.

numInputs
The width of the input signal that the DLL expects. The length of the input
array in the SimulationState struct is set to this value.

numOutputs
The number of outputs that the DLL generates. The width of the output
signal of the DLL block and the length of the output array in the Simula-
tionState struct is set to this value.
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numStates
The number of discrete states that the DLL uses. The length of the states
array in the SimulationState struct is set to this value.

numParameters
The length of the parameter vector that the DLL expects. A vector with
numParameters elements must be supplied in the Parameters field of the
component parameters of the DLL block. The parameters are passed in the
parameters array in the SimulationState struct.

void plecsOutput(struct SimulationState* aState)

This function is called whenever the simulation time reaches a multiple of the
Sample time of the DLL block.

The parameter struct SimulationState is defined as follows:

struct SimulationState {
const double* const inputs;
double* const outputs;
double* const states;
const double* const parameters;
const double time;
const char* errorMessage;
void* userData;

};

inputs
The values of the input signal for the current simulation step. The values
are read-only. The array length is the value of the numInputs field that was
set in the plecsSetSizes method.

outputs
The output values for the current simulation step. These values must be set
by the DLL. The array length is the value of the numOutputs field that was
set in the plecsSetSizes method.

states
The values of the discrete states of the DLL. These values can be read and
modified by the DLL. The array length is the value of the numStates field
that was set in the plecsSetSizes method.
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parameters
The values of the parameters that were set in the Parameters field in the
component parameters of the DLL block. The values are read-only. The ar-
ray length is the value of the numParameters field that was set in the plec-
sSetSizes method.

time
The simulation time of the current simulation step, in seconds (s).

errorMessage
The DLL may indicate an error condition by setting an error message. The
simulation will be stopped after the current simulation step.

userData
A pointer to pass data from one call into the DLL to another. The value is
not touched by PLECS.

void plecsStart(struct SimulationState* aState)

This function is called once at the start of a new simulation. It may be used
to set initial outputs or states, initialize internal data structures, acquire re-
sources etc.

The values of the inputs array in the SimulationState struct are undefined in
the plecsStart function.

void plecsTerminate(struct SimulationState* aState)

This function is called once when the simulation is finished. It may be used to
free any resources that were acquired by the DLL.

Note The processor architecture of the DLL must match the processor archi-
tecture of PLECS. For a 64-bit version of PLECS, a 64-bit DLL must be built.
The processor architecture used by PLECS is displayed in the About PLECS ...
dialog, accessible from the File menu.

Parameters Filename
The filename of the DLL. If the filename does not contain the full path of
the DLL, the DLL is searched relative to the directory containing the model
file. If no DLL is found with the given filename, a platform specific ending
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will be attached to the filename and the lookup is retried. The endings and
search order are listed in the table below.

Platform Filename search order

Windows 64-bit filename, filename.dll, filename_64.dll

macOS 64-bit filename, filename.dylib, filename_64.dylib

Linux 64-bit filename, filename.so, filename_64.so

Sample time
A scalar specifying the sampling period or a two-element vector specifying
the sampling period and offset, in seconds (s). This parameter determines
the time steps, at which the output function of the DLL is called. Valid in-
puts are a Discrete-Periodic or an Inherited sample time. See also sec-
tion “Sample Times” (on page 38).

Output delay
Allows you to delay the output in each simulation step. This is useful when
modeling, for example, a DSP that needs a certain processing time to cal-
culate the new outputs. The output delay must be smaller than the sample
time. If the output delay is a positive number, the DLL block has no direct
feedthrough, i.e. its outputs can be fed back to its inputs without causing
an algebraic loop. If an inherited sample time is specified, the output delay
must be zero.

Parameters
Array of parameter values to pass to the DLL. The length of the array must
match the value of the numParameters field that the DLL sets in the plecs-
SetSizes method.

Probe Signals Input
The input signal.

Output
The output signal.
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Double Switch

Purpose Changeover switch with two positions

Library Electrical / Switches

Description This changeover switch provides an ideal short or open circuit. If the input sig-
nal is zero, the switch is in the upper position. For all other values the switch is
in the lower position.

Parameter Initial position
Initial position of the switch. The switch is initially in the upper position if
the parameter evaluates to zero. For all other values it is in the lower posi-
tion. This parameter may either be a scalar or a vector corresponding to the
implicit width of the component. The default value is 0.

Probe Signal Switch position
State of the internal switches. The signal outputs 0 if the switch is in the
upper position, and 1 if it is in the lower position.
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Dual Active Bridge Converter

Purpose Dual Active Bridge converter module

Library Electrical / Power Modules

Description
1

1

1

1

1

1

1

1

1

1

1

1

L

n:1

Cr

Switched All power semiconductors inside the module are modeled with ideal
switches. The individual IGBTs are controlled with logical gate signals. An
IGBT is on if the corresponding gate signal is not zero. For compatibility with
the sub-step event configuration it is recommended to use the value 1 for non-
zero gate signals.

Sub-step events The module is implemented with controlled current sources,
on both primary and secondary terminals, instead of ideal switches. Both sides
of the converter have current source behavior and must be connected to posi-
tively biased capacitors or voltage sources.

The control signals are the relative on-times of the IGBTs with values between
0 and 1. They can be seen as the duty cycles of the individual IGBTs during the
simulation step. They are computed by periodically averaging the digital gate
signals over a fixed period of time.

Since the inductor current and capacitor voltage are simulated accurately, even
with relatively large time steps, the sub-steps configuration is particularly well
suited for real-time simulations with high switching frequencies. However, it
is not recommended to use discretisation step sizes (sample time parameter)
larger than one fifth of the switching period.

This type of implementation is an extension of the classical “sub-cycle average"
implementation, used in the PLECS power modules, which yields more accu-
rate simulation results than a purely switched configuration. The accuracy im-
provement is obtained by performing sub-step calculations within one simula-
tion step, which results in the calculation of as many inductor current values as
switching combinations encountered during one simulation step. This approach
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allows for a more accurate calculation of the average inductor current, which is
critical to obtain an accurate capacitor voltage calculation. Nevertheless, if the
capacitor voltage changes rapidly between two simulation steps, the accuracy
of the calculations given by the power module will degrade. Therefore, in order
to maintain high accuracy in the simulated results, the usage of low values of
resonant capacitance is not recommended.

Note The sub-steps event implementation cannot model a shoot-through or
clamping of the DC side. Therefore, the sums of the control signals for the up-
per and lower IGBTs in the same leg must not exceed 1 at any time. Also, the
applied DC voltages must never become negative.

Parameters Configuration
Allows you to chose between Switched or Sub-step events configuration.

Semiconductor symbol
This setting lets you choose between IGBT and MOSFET for the symbol the
active semiconductor switches. This setting does not change the electrical
behavior of the power module in simulation.

Include resonant capacitor
Allows you to include (yes) or remove (no) the resonant capacitor.

Stray inductance
A non-zero scalar specifying the primary side stray inductance of the trans-
former, in henries (H).

Winding resistance
A scalar specifying the resistance of the primary winding RL, in ohms (Ω).

Turns ratio
A scalar specifying the primary side turns by secondary side turns ratio.

Resonant capacitance
If the Include resonant capacitor option is set to yes, this parameter re-
quires a non-zero scalar for the resonant capacitance, in farads (F).

Sample time
A scalar specifying the sampling period or a two-element vector specifying
the sampling period and offset, in seconds (s). If the Configuration is set
to Sub-step events, this parameter requires a non-zero sampling period.
See also section “Sample Times” (on page 38).
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Assertions
When set to on, the block will flag an error if the sums of the control signals
for any of the four half-bridges exceed 1.
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Dynamic Signal Selector

Purpose Select or reorder elements from vectorized signal depending on control signal.

Library System

Description The block generates an output vector signal that consists of the specified el-
ements of the input vector signal. The elements can be dynamically selected
with the control input.

See also the Signal Selector block (see page 676).

Parameters Default index
The default element if the control signal is out of range.

Indexing
Choose whether the elements from the input vector are selected using 0-
based or 1-based indexing.

Probe Signals Input
The block input signal.

Output
The block output signal.

Switch position
The state of the switch position. This is the control signal or, in case the
control signal is out of range, the default index.

Out of range
A boolean value that is true if the control input is out of range.
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Edge Detection

Purpose Detect edges of pulse signal in given direction

Library Control / Logical

Description The output of the edge detection block changes to 1 when an edge is detected on
the input signal. It returns to 0 in the following simulation step.

The block allows you to detect the following edges:

rising
The output is set to 1 when the input changes from 0 to a non-zero value.

falling
The output is set to 1 when the input changes from a non-zero value to 0.

either
The output is set to 1 when the input changes from 0 to a non-zero value or
vice versa.

Parameter Edge direction
The direction of the edges to detect, as described above.

Probe Signals Input
The input signal.

Output
The output signal.
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Electrical Algebraic Component

Purpose Define an algebraic constraint in terms of voltage and current

Library Electrical / Passive Components

Description The Electrical Algebraic Component enforces an arbitrary algebraic constraint
involving voltage and current. The small dot marks the positive terminal.

The output signal “v” measures the voltage across the component from the pos-
itive to the negative terminal. The output signal “i” measures the current flow-
ing into the positive terminal. The two output signals must affect the input sig-
nal “0” by means of a direct feedthrough path. The component ensures that the
input signal is zero at all times.

The direct feedthrough path defines a function f(v, i), which in turn implicitly
determines the current-voltage characteristic of the component through the
constraint f(v, i) = 0. For instance, the choice f(v, i) := v − R · i causes the
Electrical Algebraic Component to act as an ideal resistor with resistance R.

The Electrical Algebraic Component can be vectorized. The three signals “v”, “i”
and “0” must have the same width.

The following schematic shows a possible implementation of a variable resistor:

There is also a Variable Resistor (see page 815) component in the library.

Note The Electrical Algebraic Component creates an algebraic loop. See sec-
tion “Block Sorting” (on page 31) for more information on algebraic loops.

440



Electrical Algebraic Component

Probe Signals Component voltage
The voltage measured across the component from the positive to the nega-
tive terminal.

Component current
The current flowing into the positive terminal of the component.

Component power
The power consumed by the component.
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Electrical Ground

Purpose Connect to common electrical ground

Library Electrical / Connectivity

Description The ground block implements an electrical connection to the ground.

Note PLECS does not require a circuit to be grounded at one or more points.
The ground block just provides a convenient means to connect distant points to
a common potential.
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Electrical Label

Purpose Connect electrical potentials by name

Library Electrical / Connectivity

Description The Electrical Label block provides an electrical connection between other Elec-
trical Label blocks with identical tag names within the same scope.

The parameter dialog of the Electrical Label block provides a list of links to the
corresponding blocks, i.e. all other Electrical Label blocks with a matching tag
name and scope. Note that the list is not updated until you click the Apply but-
ton after changing the tag name or scope.

Parameters Tag name:
The tag name is used to find other matching Electrical Label blocks to con-
nect to.

Scope:
The scope specifies the search depth for the matching Electrical Label
blocks. Using the value Global the complete PLECS circuit is searched.
When set to Schematic only the schematic containing the Electrical Label
block is searched. The setting Masked Subsystem causes a lookup within
the hierarchy of the masked subsystem in which the block is contained. If
the block is not contained in a masked subsystem, a global lookup is done.
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Electrical Model Settings

Purpose Configure settings for an individual electrical model.

Library Electrical / Model Settings

Description The Electrical Model Settings block lets you configure parameter settings that
influence the code generation for a particular electrical system, see also “Code
Generation for Physical Systems” (on page 279).

The block affects the electrical circuit that it is attached to by its electrical
terminal. At most one Model Settings block may be attached to an individual
state-space system. An electrical model can be split into multiple state-space
systems if the underlying model equations are fully decoupled. See also the op-
tions Enable state-space splitting and Display state-space splitting in the
“Simulation Parameters” (on page 111).

Parameters Target
This setting controls whether a physical model will be executed on the CPU
or the FPGA of a target. The default is CPU. The option FPGA should be chosen
only if the target supports physical model simulation on the FPGA. Cur-
rently, this applies to the PLECS RT Box 2 and 3 using version 3.0 or newer
of the RT Box Target Support Package.

Matrix coding style
This setting allows you to specify the format used for storing the state-space
matrices for a physical model. When set to sparse, only the non-zero ma-
trix entries and their row and column indices are stored. When set to full,
matrices are stored as full m × n arrays. When set to full (inlined), the
matrices are additionally embedded in helper functions, which may enable
the compiler to further optimize the matrix-vector-multiplications at the
cost of increased code size. This parameter applies only to code generation
for the CPU target.
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Electrical Port

Purpose Add electrical connector to subsystem

Library Electrical / Connectivity

Description Electrical ports are used to establish electrical connections between a schematic
and the subschematic of a subsystem (see page 695). If you copy an Electrical
Port block into the schematic of a subsystem, a terminal will be created on the
subsystem block. The name of the port block will appear as the terminal label.
If you choose to hide the block name, the terminal label will also disappear.

Terminals can be moved around the edges of the subsystem by holding down
the Shift key while dragging the terminal with the left mouse button or by us-
ing the middle mouse button.

Electrical Ports in a Top-Level Schematic

In PLECS Blockset, if an Electrical Port is placed in a top-level schematic, the
PLECS Circuit block in the Simulink model will show a corresponding elec-
trical terminal, which may be connected with other electrical terminals of the
same or a different PLECS Circuit block. The Electrical Port is also assigned a
unique physical port number. Together with the parameter Location on cir-
cuit block the port number determines the position of the electrical terminal
of the PLECS Circuit block.

For compatibility reasons you can also place an Electrical Port in a top-level
schematic in PLECS Standalone. However, since there is no parent system to
connect to, such a port will act like an isolated node.

Parameter Width
The width of the connected wire. The default auto means that the width is
inherited from connected components.

Port number
If an Electrical Port is placed in a top-level schematic in PLECS Blockset,
this parameter determines the position, at which the corresponding termi-
nal appears on the PLECS Circuit block.

Location on circuit block
If an Electrical Port is placed in a top-level schematic in PLECS Blockset,
this parameter specifies the side of the PLECS Circuit block on which the
corresponding terminal appears. By convention, left refers to the side on
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which also input terminals are shown, and right refers to the side on which
also output terminals are shown.
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Enable

Purpose Control execution of an atomic subsystem

Library System

Description The Enable block is used in an atomic subsystem (see “Virtual and Atomic Sub-
systems” on page 695) to create an enabled subsystem. When you copy an En-
able block into the schematic of a subsystem, a corresponding enable terminal
will be created on the Subsystem block. In order to move this terminal around
the edges of the Subsystem block, hold down the Shift key while dragging the
terminal with the left mouse button or use the middle mouse button.

An enabled subsystem is executed while the enable signal is non-zero. The en-
able signal may be a vector signal. In this case the enabled subsystem is exe-
cuted while any enabled signal is non-zero.

If the sample time of the Subsystem block is not inherited, the enable signal
will be evaluated only at the instants specified by the sample time parameter.

Note An enabled subsystem may not contain any physical components.

Parameters Width
The width of the enable signal. The default auto means that the width is
inherited from connected blocks.

Show output port
When this parameter is set to on, the Enable block shows an output termi-
nal for accessing the enable signal within the subsystem.

Output data type
The data type of the output signal. See “Data Types” (on page 43).

Data type overflow handling
Specifies how a data type overflow is handled. See “Data Types” (on page
43). This parameter only appears if Output data type is not set to a
floating-point data type.

Probe Signal Output
The output signal of the Enable block.
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Flux Rate Meter

Purpose Output the measured rate-of-change of magnetic flux

Library Magnetic / Meters

Description The Flux Rate Meter measures the rate-of-change Φ̇ of the magnetic flux
through the component and provides it as a signal at the output. The direction
of a positive flux is indicated with a small arrow in the component symbol. The
output signal can be made accessible in Simulink with an Output block (see
page 674) or by dragging the component into the dialog box of a Probe block.

The magnetic flux Φ cannot be measured directly in the circuit. However, most
permeance components provide the magnetic flux as a probe signal.

Note The Flux Rate Meter is ideal, i.e. it has infinite internal permeance.
Hence, if multiple Flux Rate Meters are connected in parallel the flux through
an individual meter is undefined. This produces a run-time error.

Probe Signal Flux rate
The rate-of-change Φ̇ of magnetic flux flowing through the component, in
(Wb/s) or V.
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Flying Capacitor Half Bridge

Purpose Multi-level inverter half bridge with flying capacitors

Library Electrical / Power Modules

Description

1

1

1

This component implements a multi-level inverter half bridge with flying ca-
pacitors. The vectorized terminals for the capacitors are ordered from outer to
inner voltage levels. The vectorized control inputs are ordered from the top to
the bottom switch. The power module offers two configurations:

Switched All power semiconductors inside the module are modeled with ideal
switches. The individual IGBTs are controlled with logical gate signals. An
IGBT is on if the corresponding gate signal is not zero. For compatibility with
the averaged configuration it is recommended to use the value 1 for non-zero
gate signals.

Sub-cycle average The module as a whole is modeled with controlled volt-
age and current sources. The DC side of the inverter bridge has current source
behavior and must be connected to positively biased capacitors or voltage
sources. The phase terminal is typically connected to an inductor. The control
inputs are the relative on-times of the IGBTs with values between 0 and 1.

In the average configuration the half bridge can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values 0
and 1.

• The control signals are the duty cycles of the individual IGBTs. They are ei-
ther computed directly from the modulation index or by periodically averag-
ing the digital gate signals over a fixed period of time, e.g. using the Periodic
Average block (see page 589). The averaging period does not need to be syn-
chronized with the PWM and can be as large as the inverse of the switching
frequency.

In both use cases, the average implementation correctly accounts for blanking
times, i.e. when during commutation less than two IGBTs are turned on. It also
supports discontinuous conduction mode, e.g. when charging the DC link capac-
itors via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.
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Note The sub-cycle average implementation cannot model a shoot-through
or clamping of the DC side. Therefore, the sums of the two outermost control
signals for each flying capacitor cell must not exceed 1 at any time. Also, the
applied DC voltages must never become negative.

Parameters Configuration
Switched or averaged circuit model.

Semiconductor symbol
This setting lets you choose between IGBT and MOSFET for the symbol the
active semiconductor switches. This setting does not change the electrical
behavior of the power module in simulation.

Number of capacitors
Specifies how many capacitors and how many voltage levels the half bridge
power module contains.

Assertions
When set to on, the block will flag an error if the sums of the control signals
for the upe
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Force (Constant)

Purpose Generate constant force

Library Mechanical / Translational / Sources

Description The Constant Force generates a constant force between its two flanges. The di-
rection of a positive force is indicated by the arrow.

Note A force source may not be left unconnected or connected in series with a
spring or any other force source.

Parameters Second flange
Controls whether the second flange is accessible or connected to the transla-
tional reference frame.

Force
The magnitude of the torque, in newtons (N). The default value is 1.

Probe Signals Force
The generated force, in newtons (N).

Speed
The speed of the flange that the arrow points to with respect to the other
flange, in

(
m
s

)
.
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Force (Controlled)

Purpose Generate variable force

Library Mechanical / Translational / Sources

Description The Controlled Force generates a variable force between its two flanges. The
direction of a positive force is indicated by the arrow. The momentary force is
determined by the signal fed into the input of the component.

Note A force source may not be left unconnected or connected in series with a
spring or any other force source.

Parameters Second flange
Controls whether the second flange is accessible or connected to the transla-
tional reference frame.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of mechanical measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Probe Signals Force
The generated force, in newtons (N).

Speed
The speed of the flange that the arrow points to with respect to the other
flange, in

(
m
s

)
.
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Force Sensor

Purpose Output measured force as signal

Library Mechanical / Translational / Sensors

Description The Force Sensor measures the force between its two flanges and provides it as
a signal at the output of the component. A force flow from the unmarked flange
towards the flange marked with a dot is considered positive.

Note A force sensor is ideally rigid. Hence, if multiple force sensors are con-
nected in parallel the force measured by an individual sensor is undefined. This
produces a run-time error.

Parameter Second flange
Controls whether the second flange is accessible or connected to the transla-
tional reference frame.

Probe Signal Force
The measured force, in newtons (N).
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Fourier Series

Purpose Synthesize periodic output signal from Fourier coefficients

Library Control / Functions & Tables

Description

Fourier
Series

The Fourier Series block calculates the series

y =
a0
2

+
∑
n

an · cos(nx) + bn · sin(nx)

as a function of the input signal x.

Parameters Fourier coefficients
The coefficients a0, an, and bn of the fourier series. The vectors an and bn
must have the same length.

Probe Signals Input
The input signal.

Output
The output signal.
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Fourier Transform

Purpose Perform Fourier transform on input signal

Library Control / Filters

Description

FT

This block calculates the Fourier transform of a periodic input signal. The sam-
ple time, the fundamental frequency and the harmonic order(s) can be specified.
The outputs of the block are the magnitude and phase angle of the specified
harmonics.

If you specify more than one harmonic, the outputs will be vectors with the cor-
responding width. Alternatively you can specify a single harmonic and feed a
vector signal into the block.

Parameters Sample time
A scalar specifying the sampling period or a two-element vector specify-
ing the sampling period and offset, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38). If a
sample time of 0 is specified, a continuous implementation based on the
Moving Average block (see page 571) is active. The Discrete-Periodic im-
plementation can potentially force a variable-step solver to take small inte-
gration steps. This may slow down the simulation. The default value of this
parameter is 0.

Fundamental frequency
The fundamental frequency of the periodic input signal in hertz (Hz).

Harmonic orders n
A scalar or vector specifying the harmonic component(s) you are interested
in. Enter 0 for the dc component, 1 for the fundamental component, etc.
This parameter should be scalar if the input signal is a vector.

Probe Signals Input
The input signal.

Magnitude
The first output signal, i.e. the computed magnitude.

Phase
The second output signal, i.e. the computed phase angle, in radians.
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From File

Purpose Read time stamps and signal values from a file.

Library System

Description While a simulation is running, the From File block reads time stamps and sig-
nal values from a file. The file format can be either a text file with comma sepa-
rated values (csv) or a MATLAB data file (mat).

During the simulation, the signal values for the current simulation time are
read from the file and made available as a vectorized signal at the output of the
From File block.

Data layout

The required input data layout differs for these two file types.

CSV file A CSV file must contain one or more rows. The first element in each
row contains a timestamp; the remaining elements contain data for the corre-
sponding output values. Thus, the total number of columns must be equal to
the parameter Number of outputs plus 1. The first row may contain column
headers instead of numeric values. In this case, it is silently ignored.

MAT file A MAT file must contain one matrix with real double values. Com-
pared to the CSV file, the matrix layout is transposed. The total number of rows
must be equal to the number of outputs plus 1. The first element in each col-
umn contains a timestamp, and the remaining elements in each column contain
data for the corresponding output values.

Parameters Filename
The name or path of the data file to read from. Relative paths are inter-
preted relative to the model directory.

If you choose the option literal, the string that you enter is taken literally
as the basename of the data file. So, if you enter e.g. MyFile, the file name
will be MyFile.csv or MyFile.mat.

If you choose the option evaluate, the string that you enter is inter-
preted as a MATLAB/Octave expression that must yield a string, which
in turn is taken as the basename of the data file. So, if you enter e.g.
[’MyFile’ num2str(index)] and the current workspace contains a variable
index with a value of 2, the file name will be MyFile2.csv or MyFile2.mat.
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File type
The file format the specified data file has to comply to. The block can read
text files with comma separated values (csv) or MATLAB data files (mat).

Number of outputs
The number of signal values in each data record (row) of the file (which is
the number of columns minus one). If this number does not correspond to
the actual number of signal values provided by the file, an error message is
shown.

Output before first time stamp
The method used to determine the output of the From File block for simu-
lation times before the first time stamp in the data file. Possible values are
linear extrapolation, hold first value and specify value. If the pa-
rameter is set to specify value, an additional parameter field Initial out-
put value is shown to define the output value before the first time stamp.

Initial output value
The output value before the first signal value specified in the data file.
This parameter is only visible if Output before first time stamp is set
to specify value. The value can be given as a scalar or a vector. If it is
a scalar, it is used for all signals, if it is a vector, its size has to match the
Number of outputs parameter.

Output within time range
The method used to determine the output of the From File block for simu-
lation times between time stamps specified in the data file. Possible values
are linear interpolation and zero order hold.

Output after last time stamp
The method used to determine the output of the From File block for simu-
lation times after the last time stamp in the data file. Possible values are
linear extrapolation, hold last value and specify value. If the pa-
rameter is set to specify value, an additional parameter field Final out-
put value is shown to define the output value after the last time stamp.

Final output value
The output value after the last signal value specified in the data file. This
parameter is only visible if Output after first time stamp is set to spec-
ify value. The value can be given as a scalar or a vector. If it is a scalar it,
is used for all signals, if it is a vector, its size has to match the Number of
outputs parameter.

Locate discontinuities
Possible values are on and off. If this parameter is set to on, the solver will
ensure a time step at each time stamp specified in the data file. This setting
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requires a variable step solver.
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Function

Function

Purpose Apply arbitrary arithmetic expression to scalar or vectorized input signal

Library Control / Functions & Tables

Description

f (u)

The Function block applies an arithmetic expression specified in C language
syntax to its input. The input may be a scalar or vectorized continuous signal,
the output is always a scalar continuous signal. The expression may consist of
one or more of the following components:

• u — the input of the block. If the input is vectorized, u(i) or u[i] represents
the ith element of the vector. To access the first element, enter u(1), u[1], or
u alone.

• Brackets
• Numeric constants, including pi

• Arithmetic operators (+ - * / ˆ)
• Relational operators (== != > < >= <=)
• Logical operators (&& || !)
• Mathematical functions — abs, acos, asin, atan, atan2, cos, cosh, exp, log,

log10, max, min, mod, pow, sgn, sin, sinh, sqrt, tan, and tanh.
• Workspace variables

Parameter Expression
The expression applied to the input signal, in C language syntax.

Probe Signals Input
The input signal.

Output
The output signal.
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FMU

Purpose Include a Functional Mockup Unit in a model

Library Control / Functions & Tables

Description The FMU block imports existing Functional Mockup Units (FMUs) into a
PLECS model. This block supports the FMI Model Exchange interface standard
in version 2.0.

To specify an FMU file, select the FMU block and choose Edit FMU file... from
the Edit menu or from the block’s context menu. If no FMU file has been spec-
ified yet, you can also just double-click on the block. Click on the ... button next
to the FMU file field to choose an existing FMU file. By default, the FMU file is
specified with a path relative to the model file, but you can change this with the
FMU file reference selector.

When you click OK, PLECS creates a folder filename.fmu.expanded next to
the FMU file and updates the input and output terminals of the block according
to the FMU description.

Once the FMU file has been specified, a double-click on the FMU block will
open a dialog that allows you to view and edit the parameters that are defined
by the FMU file. If the FMU file contains documentation, you can view this by
clicking on the Help button of the parameter dialog.
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Full-Bridge LLC Resonant Converter

Purpose Full-Bridge LLC Resonant Converter converter module

Library Electrical / Power Modules

Description
1

1

1

1

1

1

1

1 n:1�1

Lm

L

Cr

Switched All power semiconductors inside the module are modeled with ideal
switches. The individual IGBTs are controlled with logical gate signals. An
IGBT is on if the corresponding gate signal is not zero. For compatibility with
the sub-step events configuration it is recommended to use the value 1 for non-
zero gate signals.

Sub-step events The module is implemented with controlled current sources,
on both primary and secondary terminals, instead of ideal switches. Both sides
of the converter have current source behavior and must be connected to posi-
tively biased capacitors or voltage sources.

The control signals are the relative on-times of the IGBTs with values between
0 and 1. They can be seen as the duty cycles of the individual IGBTs during the
simulation step. They are computed by periodically averaging the digital gate
signals over a fixed period of time.

Since the inductors current and capacitor voltage are simulated accurately,
even with relatively large time steps, the sub-steps configuration is particularly
well suited for real-time simulations with high switching frequencies. However,
it is not recommended to use discretisation step sizes (sample time parameter)
larger than one fifth of the switching period.

This type of implementation is an extension of the classical “sub-cycle average"
implementation, used in the PLECS power modules, which yields more accu-
rate simulation results than a purely switched configuration. The accuracy im-
provement is obtained by performing sub-step calculations within one simula-
tion step, which results in the calculation of as many inductors current values
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as switching combinations encountered during one simulation step. This ap-
proach allows for a more accurate calculation of the average inductors current,
which is critical to obtain an accurate capacitor voltage calculation. Neverthe-
less, if the capacitor voltage changes rapidly between two simulation steps, the
accuracy of the calculations given by the power module will degrade. Therefore,
in order to maintain high accuracy in the simulated results, the usage of low
values of resonant capacitance is not recommended.

Note The sub-steps event implementation cannot model a shoot-through or
clamping of the DC side. Therefore, the sums of the control signals for the up-
per and lower IGBTs in the same leg must not exceed 1 at any time. Also, the
applied DC voltages must never become negative.

Parameters Configuration
Allows you to chose between Switched or Sub-step events configuration.

Semiconductor symbol
This setting lets you choose between IGBT and MOSFET for the symbol the
active semiconductor switches. This setting does not change the electrical
behavior of the power module in simulation.

Output rectifier
This setting lets you choose between Half bridge and Full bridge output
rectifier topology.

Stray inductance
A non-zero scalar specifying the primary side stray inductance of the trans-
former, in henries (H).

Winding resistance
A scalar specifying the resistance of the primary winding RL, in ohms (Ω).

Magentization inductance
A non-zero scalar specifying the primary side magnetizing inductance of the
transformer, in henries (H).

Turns ratio
A scalar specifying the primary side turns by secondary side turns ratio.

Resonant capacitance
If the Include resonant capacitor option is set to yes, this parameter re-
quires a non-zero scalar for the resonant capacitance, in farads (F).
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Sample time
A scalar specifying the sampling period or a two-element vector specifying
the sampling period and offset, in seconds (s). If the Configuration is set
to Sub-step events, this parameter requires a non-zero sampling period.
See also section “Sample Times” (on page 38).

Assertions
When set to on, the block will flag an error if the sums of the control signals
for any of the four half-bridges exceed 1.
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Gain

Purpose Multiply input signal by constant

Library Control / Math

Description The Gain block multiplies the input signal with the gain value. The multipli-
cation can either be an element-wise (K · u) or a matrix multiplication (K ∗ u).

Parameters Gain
The gain value to multiply with the input signal. For element-wise multipli-
cation the gain value can be a scalar or a vector matching the width of the
input signal. For matrix multiplication the gain value can be a scalar, a vec-
tor or a matrix which has as many columns as the width of the input signal.

Multiplication
Specifies whether element-wise (K ·u) or matrix multiplication (K∗u) should
be used.

Output data type
The data type of the output signal. See “Data Types” (on page 43). If you
choose inherited, the minimum data type is int8_t.

Data type overflow handling
Specifies how a data type overflow is handled. See “Data Types” (on page
43). This parameter only appears if Output data type is not set to a
floating-point data type.

Probe Signals Input
The input signal.

Output
The output signal.
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Gear

Purpose Ideal gear

Library Mechanical / Rotational / Components

Description The Gear models an ideal gearbox with two shafts rotating in the same direc-
tion. The shaft moving with ω2 is marked with a dot. The relation between the
torques and angular speeds of the two shafts is described with the following
equations:

ω2 = g · ω1

τ1 = g · τ2

where g is the gearbox ratio.

Parameter Gear ratio
The gearbox ratio g. A negative gearbox ratio will cause the shafts to rotate
in opposite directions.
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GTO

Purpose Ideal GTO with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The Gate Turn Off Thyristor can also be switched off via the gate. Like a nor-
mal thyristor it closes when the voltage between anode and cathode is positive
and a positive gate signal is applied. It opens when the current becomes nega-
tive or the gate signal becomes negative.

Parameters The following parameters may either be scalars or vectors corresponding to the
implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
GTO is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the GTO. The GTO is initially blocking if the pa-
rameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on page
131). If no thermal description is given, the losses are calculated based on
the voltage drop von = Vf +Ron · i.

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).
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Probe Signals GTO voltage
The voltage measured between anode and cathode.

GTO current
The current through the GTO flowing from anode to cathode.

GTO gate signal
The gate input signal of the GTO.

GTO conductivity
Conduction state of the internal switch. The signal outputs 0 when the GTO
is blocking, and 1 when it is conducting.

GTO junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

GTO conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

GTO switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.
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GTO (Reverse Conducting)

Purpose Ideal GTO with ideal anti-parallel diode

Library Electrical / Power Semiconductors

Description This model of a Gate Turn Off Thyristor has an integrated anti-parallel diode.
The diode is usually included in power GTO packages.

Parameters The following parameters may either be scalars or vectors corresponding to the
implicit width of the component:

Initial conductivity
Initial conduction state of the GTO. The GTO is initially blocking if the pa-
rameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapters “Thermal Modeling” (on
page 131) and “Losses of Semiconductor Switch with Diode” (on page 161)
for more information.

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).

Probe Signals Device voltage
The voltage measured between anode and cathode.

Device current
The current through the device flowing from anode to cathode.

Device gate signal
The gate input signal of the device.
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Device conductivity
Conduction state of the internal switch. The signal outputs 0 when the de-
vice is blocking, and 1 when it is conducting.

Device junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

Device conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Device switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.
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Half-Bridge LLC Resonant Converter

Purpose Half-Bridge LLC Resonant Converter converter module

Library Electrical / Power Modules

Description
1

1

1

1

1

1

n:1�1

Lm

L

Cr

Switched All power semiconductors inside the module are modeled with ideal
switches. The individual IGBTs are controlled with logical gate signals. An
IGBT is on if the corresponding gate signal is not zero. For compatibility with
the averaged configuration it is recommended to use the value 1 for non-zero
gate signals.

Sub-step events The module is implemented with controlled current sources,
on both, primary and secondary terminals, instead of ideal switches.

The control signals are the relative on-times of the IGBTs with values between
0 and 1. They can be seen as the duty cycles of the individual IGBTs during the
simulation step. They are computed by periodically averaging the digital gate
signals over a fixed period of time.

This type of implementation is an extension of the classical“sub-cycle average"
implementation, used in the PLECS power modules, which yields more accu-
rate simulation results. The accuracy improvement is obtained by performing
sub-step calculations within one simulation steps. This results in the calcula-
tion of as many inductor current values as switching combination encountered
during one simulation step. This allows for a more accurate calculation of the
average inductors current and capacitor voltage.

Since the inductor current and capacitor’s voltage, are simulated accurately,
even with relatively large time steps, the sub-steps configuration is particularly
well suited for real-time simulations with high switching frequencies.
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Note The sub-steps event implementation cannot model a shoot-through or
clamping of the DC side. Therefore, the sums of the control signals for the up-
per and lower IGBTs in the same leg must not exceed 1 at any time. Also, the
applied DC voltages must never become negative.

Note In order to maintain high accuracy in the simulated results, the usage
of low values of resonant capacitance is not recommended. If the magnitude of
the voltage variation across the capacitance changes rapidly between two simu-
lation steps, the accuracy of the calculations in the power module will degrade.

Note The discretisation step size (sample time parameter) should not be
larger than one fifth of the switching period.

Parameters Configuration
Allows you to chose between Switched or Sub-step events configuration.

Semiconductor symbol
This setting lets you choose between IGBT and MOSFET for the symbol the
active semiconductor switches. This setting does not change the electrical
behavior of the power module in simulation.

Output rectifier
This setting lets you choose between Half bridge and Full bridge output
rectifier topology.

Stray inductance
A non-zero scalar specifying the primary side stray inductance of the trans-
former, in henries (H).

Winding resistance
A scalar specifying the resistance of the primary winding RL, in ohms (Ω).

Magentization inductance
A non-zero scalar specifying the primary side magnetizing inductance of the
transformer, in henries (H).

Turns ratio
A scalar specifying the primary side turns by secondary side turns ratio.
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Resonant capacitance
If the Include resonant capacitor option is set to yes, this parameter re-
quires a non-zero scalar for the resonant capacitance, in farads (F).

Sample time
A scalar specifying the sampling period or a two-element vector specifying
the sampling period and offset, in seconds (s). If the Configuration is set
to Sub-step events, this parameter requires a non-zero sampling period.
See also section “Sample Times” (on page 38).

Assertions
When set to on, the block will flag an error if the sums of the control signals
for any of the four half-bridges exceed 1.
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Heat Flow Meter

Purpose Output measured heat flow as signal

Library Thermal / Meters

Description

W

The Heat Flow Meter measures the heat flow through the component and pro-
vides it as a signal at the output. The direction of a positive heat flow is indi-
cated by the small arrow at one of the thermal ports. The output signal can be
made accessible in Simulink with a Output block (see page 674) or by dragging
the component into the dialog box of a Probe block.

Probe Signal Measured heat flow
The measured heat flow in watts (W).
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Heat Sink

Purpose Isotherm environment for placing components

Library Thermal / Components

Description The Heat Sink absorbs the thermal losses dissipated by the components within
its boundaries. At the same time it defines an isotherm environment and propa-
gates its temperature to the components which it encloses. To change the size of
a Heat Sink, select it, then drag one of its selection handles.

With the parameter Number of terminals you can add and remove thermal
connectors to the heat sink in order to connect it to an external thermal net-
work. The connectors can be dragged along the edge of the heat sink with the
mouse by holding down the Shift key or using the middle mouse button. In or-
der to remove a thermal connector, disconnect it, then reduce the Number of
terminals. PLECS will not allow you to remove connected terminals.

For additional information see chapter “Thermal Modeling” (on page 131).

Parameters Number of terminals
This parameter allows you to change the number of external thermal con-
nectors of a heat sink. The default is 0.

Thermal capacitance
The value of the internal thermal capacitance, in (J/K). The default is 0.

If the capacitance is set to zero, the heat sink must be connected to an exter-
nal thermal capacitance or to a fixed temperature.

Initial temperature
The initial temperature difference between the heat sink and the thermal
reference at simulation start, in degrees Celsius (◦C). If left blank or if the
value is nan, PLECS will initialize the value based on a thermal “DC” anal-
ysis, see “Temperature Initialization” (on page 137).

Width
This parameter allows you to set the width of the internal thermal capaci-
tance and the external terminals. The default is 1. A non-scalar heat sink
can enclose only components that have the same width.

Probe Signal Temperature
The temperature difference between the heat sink and the thermal refer-
ence, in degrees Celsius (◦C).
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Hit Crossing

Purpose Detect when signal reaches or crosses given value

Library Control / Discontinuous

Description The Hit Crossing block detects when the input signal reaches or crosses a value
in the specified direction. If a variable-step solver is used, a simulation step is
forced at the time when the crossing occurs. The output signal is 1 for one simu-
lation time step when a crossing occurs, 0 otherwise.

Parameters Hit crossing offset
The offset that the input signal has to reach or cross.

Hit crossing direction
The value rising causes hit crossings only when the input signal is ris-
ing. If falling is chosen, only hit crossings for a falling input signal are
detected. The setting either causes hit crossing for rising and falling sig-
nals to be detected.

Threshold
The threshold value used for the switch criteria.

Show output port
The output terminal of the Hit Crossing block will be hidden if the param-
eter is set to off. This setting only makes sense to force a simulation step
while using a variable-step solver.

Probe Signals Input
The block input signal.

Crossing signal
Outputs 1 for one simulation time step when a crossing occurs, 0 otherwise.
This probe signal is identical to the output signal.
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15 Component Reference

Hysteretic Core

Purpose Magnetic core element with static hysteresis

Library Magnetic / Components

Description This component models a segment of a magnetic core. It establishes a non-
linear relationship between the magnetic field strength H and the flux den-
sity B. The hysteresis characteristics is based on a Preisach model with a
Lorentzian distribution function.

The figure below shows a fully excited major hysteresis curve with some minor
reversal loops. The major curve is defined by the saturation point (Hsat, Bsat),
the coercitive field strength Hc, the remanence flux density Br and the satu-
rated permeability µsat.

µsat

H

B

Hc Hsat

Br

Bsat

Parameters Cross-sectional area
Cross-sectional area A of the flux path, in square meters (m2).

Length of flux path
Length l of the flux path, in meters (m).

Coercitive field strength
Coercitive field strength Hc for B = 0, in amperes per meter (A/m).

Remanence flux density
Remanence flux density Br for H = 0, in teslas (T).

Saturation field strength
Field strength Hsat at the saturation point, in amperes per meter (A/m).
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Hysteretic Core

Saturation flux density
Flux density Bsat at the saturation point, in teslas (T).

Saturated rel. permeability
Relative permeability µr,sat = µsat/µ0 of the core material for H > Hsat.

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked ter-
minal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.

Field strength
The magnetic field strength H in the core element, in amperes per meter
(A/m).

Flux density
The magnetic flux density B in the core element, in teslas (T).

Loss energy
The energy dissipated in the core, in joules (J). An energy pulse is gener-
ated each time a minor or major hysteresis loop is closed.
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15 Component Reference

Ideal 3-Level Converter (3ph)

Purpose Switch-based 3-phase 3-level converter

Library Electrical / Converters

Description Implements a three-phase three-level converter with ideal switches. The con-
verter is modeled using the Triple Switch component (see page 796). The gate
input is a vector of three signals – one per leg. The phase output is connected
to the positive, neutral, and negative dc level according to the sign of the corre-
sponding gate signal.

The electrical circuit for the converter is shown below:

0

a

b

c

–

+
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Ideal Converter (3ph)

Ideal Converter (3ph)

Purpose Switch-based 3-phase converter

Library Electrical / Converters

Description Implements a three-phase two-level converter with ideal bi-positional switches.
The converter is modeled using the Double Switch component (see page 434).
The gate input is a vector of three signals – one per leg. The phase output is
connected to the positive dc level upon a positive gate signal, and else to the
negative dc level.

The electrical circuit for the converter is shown below:

+

a

b

c

–
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15 Component Reference

Ideal Transformer

Purpose Ideally coupled windings with or without magnetizing inductance

Library Electrical / Transformers

Description This component represents a transformer with two or more ideally coupled
windings. At all windings w, the voltage vw across the winding divided by the
corresponding number of turns nw is the same:

v1
n1

=
v2
n2

=
v3
n3

= . . .

If the transformer does not have a finite magnetizing inductance (i.e. the induc-
tance value is set to inf), the currents iw of all windings multiplied with the
corresponding number of turns add up to zero:

0 = i1 · n1 + i2 · n2 + i3 · n3 + . . .

If the transformer does have a finite magnetizing inductance, the currents iw of
all windings multiplied with the corresponding number of turns add up to the
magnetizing current multiplied with the number of turns in the first winding:

im · n1 = i1 · n1 + i2 · n2 + i3 · n3 + . . .

In the transformer symbol, the first primary side winding is marked with a lit-
tle circle. The orientation of the other windings is indicated by a dot. Currents
entering a terminal marked with the circle or a dot are considered positive.

Use the Polarity parameter to change the orientation of a specific winding.
This is equivalent to making the corresponding number of turns nw negative.

Parameters Number of windings
A two-element vector [w1 w2] containing the number of windings on the pri-
mary side w1 and on the secondary side w2. The default is [1 1], which rep-
resents a two-winding transformer with opposite windings.

Number of turns
A row vector specifying the number of turns for each winding. The vector
length must match the total number of primary and secondary side wind-
ings. First, all primary side windings are specified, followed by the specifica-
tions for all secondary side windings.

Polarity
A string consisting of one + or - per winding specifying the winding polarity.
A single + or - is applied to all windings.
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Ideal Transformer

Magnetizing inductance
A non-zero scalar specifying the magnetizing inductance referred to the first
winding, in henries (H).

Initial magnetizing current
A scalar specifying the initial current through the magnetizing inductance
at simulation start, in amperes (A). Must be zero if the magnetizing induc-
tance is infinite inf.
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15 Component Reference

IGBT

Purpose Ideal IGBT with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The Insulated Gate Bipolar Transistor is a semiconductor switch that is con-
trolled via the external gate. It conducts a current from collector to emitter only
if the gate signal is not zero.

Parameters The following parameters may either be scalars or vectors corresponding to the
implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) between collector and emitter when the
IGBT is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the IGBT. The IGBT is initially blocking if the
parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on page
131). If no thermal description is given, the losses are calculated based on
the voltage drop von = Vf +Ron · i.

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).
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IGBT

Probe Signals IGBT voltage
The voltage measured between collector and emitter.

IGBT current
The current through the IGBT flowing from collector to emitter.

IGBT gate signal
The gate input signal of the IGBT.

IGBT conductivity
Conduction state of the internal switch. The signal outputs 0 when the
IGBT is blocking, and 1 when it is conducting.

IGBT junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

IGBT conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

IGBT switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.
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15 Component Reference

IGBT 3-Level Converter (3ph)

Purpose 3-phase 3-level neutral-point clamped IGBT converter

Library Electrical / Converters

Description Implements a three-phase three-level IGBT converter with neutral point clamp-
ing. The gate input is a vector of three signals – one per leg. The topmost IGBT,
connected to the positive dc level, is turned on if the corresponding gate signal
is ≥ 1, and the second IGBT if the signal is ≥ 0. The third IGBT is turned on for
signals ≤ 0 and the lowest one for signals ≤ −1. Gate signal values of 1, 0 and
−1 connect the phase output to the positive, neutral and negative dc level. By
applying a non-zero signal at the inhibit input marked with “x” you can turn off
all IGBTs.

You can choose between two different converter models:

• The basic IGBT 3-Level Converter is modeled using the component IGBT
with Diode (see page 502). No parameters can be entered.

• The IGBT 3-Level Converter with Parasitics is based on individual IGBT
(see page 482) and Diode (see page 411) components. In this model you may
specify forward voltages and on-resistances separately for the IGBTs and the
diodes.

Note Due to the switching conditions of the IGBT with Diode (see page 502),
this device cannot be turned off actively while the current is exactly zero. This
may result in unexpected voltage waveforms if the converter is not loaded.

To resolve this problem, either use the IGBT 3-Level Converter with Para-
sitics, or allow a small non-zero load current to flow by connecting a large load
resistance to the converter.
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IGBT 3-Level Converter (3ph)

The electrical circuit for the converter is shown below:

0

a

b

c

–

+

Parameters For a description of the parameters see the documentation of the IGBT with
Diode (on page 502), the IGBT (on page 482) and the Diode (on page 411).

Probe Signals The three-level IGBT converters provide 36 probe signals grouped by leg. Each
signal is a vector containing the appropriate quantities of the individual de-
vices: voltage, current, conductivity, conduction loss and switching loss. The
vector elements are ordered top-to-bottom.

For the IGBT 3-Level Converter with Parasitics the diode probe signal vec-
tors are in the order: anti-parallel diodes (top-to-bottom), clamping diodes (top-
to-bottom).
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15 Component Reference

IGBT 3-Level Half Bridge (NPC)

Purpose 3-level neutral-point clamped IGBT module

Library Electrical / Power Modules

Description This power module implements a single leg of a 3-level neutral-point clamped
voltage source inverter. It offers two configurations:

Switched All power semiconductors inside the module are modeled with ideal
switches. The individual IGBTs are controlled with logical gate signals. An
IGBT is on if the corresponding gate signal is not zero. For compatibility with
the averaged configuration it is recommended to use the value 1 for non-zero
gate signals.

Sub-cycle average The module as a whole is modeled with controlled volt-
age and current sources. The DC side of the inverter bridge has current source
behavior and must be connected to positively biased capacitors or voltage
sources. The phase terminal is typically connected to an inductor. The control
inputs are the relative on-times of the IGBTs with values between 0 and 1.

In the average configuration the half bridge can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values 0
and 1.

• The control signals are the duty cycles of the individual IGBTs. They are ei-
ther computed directly from the modulation index or by periodically averag-
ing the digital gate signals over a fixed period of time, e.g. using the Periodic
Average block (see page 589). The averaging period does not need to be syn-
chronized with the PWM and can be as large as the inverse of the switching
frequency.

In both use cases, the average implementation correctly accounts for blanking
times, i.e. when during commutation less than two IGBTs are turned on. It also
supports discontinuous conduction mode, e.g. when charging the DC link capac-
itors via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.
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IGBT 3-Level Half Bridge (NPC)

Note The sub-cycle average implementation cannot model a shoot-through or
clamping of the DC side. Therefore, the sums of the control signals for the first
and third IGBT and second and fourth IGBT must not exceed 1 at any time.
Also, the applied DC voltages must never become negative.

Parameters Configuration
Switched or averaged circuit model.

Assertions
When set to on, the block will flag an error if the sums of the control signals
for IGBT 1 and 3 or IGBT 2 and 4 exceed 1.
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15 Component Reference

IGBT Chopper (High-Side Switch)

Purpose Buck converter IGBT module

Library Electrical / Power Modules

Description This power module implements a chopper used in buck converters. It offers two
configurations:

Switched The power semiconductors inside the module are modeled with
ideal switches. The IGBT is controlled with a logical gate signal; it is on if the
gate signal is not zero. For compatibility with the averaged configuration it is
recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The module as a whole is modeled with controlled volt-
age and current sources. The electrical input of the chopper has current source
behavior and must be connected to a positively biased capacitor or voltage
source. The output terminal is typically connected to an inductor. The control
input is the relative on-time of the IGBT with values between 0 and 1.

In the average configuration the chopper can be operated in two ways:

• The control signal is the instantaneous logical gate signal having the values
0 and 1.

• The control signal is the duty cycle of the IGBT. It is either computed directly
from the modulation index or by periodically averaging the digital gate signal
over a fixed period of time, e.g. using the Periodic Average block (see page
589). The averaging period does not need to be synchronized with the PWM
and can be as large as the inverse of the switching frequency.

In both use cases, the average implementation supports continuous and discon-
tinuous conduction mode.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.

Note The sub-cycle average implementation cannot model clamping of the
input side. Therefore, the applied DC voltage must never become negative.

Parameter Configuration
Switched or averaged circuit model.
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IGBT Chopper (High-Side Switch with Reverse Diode)

IGBT Chopper (High-Side Switch with Reverse Diode)

Purpose Buck converter IGBT module with reverse diode

Library Electrical / Power Modules

Description This power module implements a chopper used in buck converters. It offers two
configurations:

Switched The power semiconductors inside the module are modeled with
ideal switches. The IGBT is controlled with a logical gate signal; it is on if the
gate signal is not zero. For compatibility with the averaged configuration it is
recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The module as a whole is modeled with controlled volt-
age and current sources. The electrical input of the chopper has current source
behavior and must be connected to a positively biased capacitor or voltage
source. The output terminal is typically connected to an inductor. The control
input is the relative on-time of the IGBT with values between 0 and 1.

In the average configuration the chopper can be operated in two ways:

• The control signal is the instantaneous logical gate signal having the values
0 and 1.

• The control signal is the duty cycle of the IGBT. It is either computed directly
from the modulation index or by periodically averaging the digital gate signal
over a fixed period of time, e.g. using the Periodic Average block (see page
589). The averaging period does not need to be synchronized with the PWM
and can be as large as the inverse of the switching frequency.

In both use cases, the average implementation supports continuous and discon-
tinuous conduction mode.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies. If the reversed diode is not needed, the
alternative chopper module (see page 488) is preferred to minimize model com-
plexity.

Note The sub-cycle average implementation cannot model clamping of the
input side. Therefore, the applied DC voltage must never become negative.
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15 Component Reference

Parameter Configuration
Switched or averaged circuit model.
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IGBT Chopper (Low-Side Switch)

IGBT Chopper (Low-Side Switch)

Purpose Boost converter IGBT module

Library Electrical / Power Modules

Description This power module implements a chopper used in boost converters. It offers two
configurations:

Switched The power semiconductors inside the module are modeled with
ideal switches. The IGBT is controlled with a logical gate signal; it is on if the
gate signal is not zero. For compatibility with the averaged configuration it is
recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The module as a whole is modeled with controlled volt-
age and current sources. The electrical input of the chopper has current source
behavior and must be connected to a positively biased capacitor or voltage
source. The output terminal is typically connected to an inductor. The control
input is the relative on-time of the IGBT with values between 0 and 1.

In the average configuration the chopper can be operated in two ways:

• The control signal is the instantaneous logical gate signal having the values
0 and 1.

• The control signal is the duty cycle of the IGBT. It is either computed directly
from the modulation index or by periodically averaging the digital gate signal
over a fixed period of time, e.g. using the Periodic Average block (see page
589). The averaging period does not need to be synchronized with the PWM
and can be as large as the inverse of the switching frequency.

In both use cases, the average implementation supports continuous and discon-
tinuous conduction mode.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.

Note The sub-cycle average implementation cannot model clamping of the
input side. Therefore, the applied DC voltage must never become negative.

Parameter Configuration
Switched or averaged circuit model.
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15 Component Reference

IGBT Chopper (Low-Side Switch with Reverse Diode)

Purpose Boost converter IGBT module with reverse diode

Library Electrical / Power Modules

Description This power module implements a chopper used in boost converters. It offers two
configurations:

Switched The power semiconductors inside the module are modeled with
ideal switches. The IGBT is controlled with a logical gate signal; it is on if the
gate signal is not zero. For compatibility with the averaged configuration it is
recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The module as a whole is modeled with controlled volt-
age and current sources. The electrical input of the chopper has current source
behavior and must be connected to a positively biased capacitor or voltage
source. The output terminal is typically connected to an inductor. The control
input is the relative on-time of the IGBT with values between 0 and 1.

In the average configuration the chopper can be operated in two ways:

• The control signal is the instantaneous logical gate signal having the values
0 and 1.

• The control signal is the duty cycle of the IGBT. It is either computed directly
from the modulation index or by periodically averaging the digital gate signal
over a fixed period of time, e.g. using the Periodic Average block (see page
589). The averaging period does not need to be synchronized with the PWM
and can be as large as the inverse of the switching frequency.

In both use cases, the average implementation supports continuous and discon-
tinuous conduction mode.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies. If the reversed diode is not needed, the
alternative chopper module (see page 491) is preferred to minimize model com-
plexity.

Note The sub-cycle average implementation cannot model clamping of the
input side. Therefore, the applied DC voltage must never become negative.
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IGBT Chopper (Low-Side Switch with Reverse Diode)

Parameter Configuration
Switched or averaged circuit model.
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15 Component Reference

IGBT Converter (3ph)

Purpose 3-phase IGBT converter

Library Electrical / Converters

Description Implements a three-phase two-level IGBT converter with reverse diodes. The
gate input is a vector of three signals – one per leg. The upper IGBT, connected
to the positive dc level, is on if the corresponding gate signal is positive. The
lower IGBT is on if the gate signal is negative. If the gate signal is zero, both
IGBTs in the leg are switched off.

You can choose between two different converter models:

• The basic IGBT Converter is modeled using the component IGBT with
Diode (see page 502). PLECS needs only six internal switches to represent
this converter, so the simulation is faster compared to the detailed converter.
No electrical parameters can be entered, but the thermal losses may be speci-
fied.

• The IGBT Converter with Parasitics is based on individual IGBT (see
page 482) and Diode (see page 411) components. In this model you may spec-
ify all electrical and thermal parameters separately for the IGBTs and the
diodes.

Note Due to the switching conditions of the IGBT with Diode (see page 502),
this device cannot be turned off actively while the current is exactly zero. This
may result in unexpected voltage waveforms if the converter is not loaded.

To resolve this problem, either use the IGBT Converter with Parasitics, or
allow a small non-zero load current to flow by connecting a large load resistance
to the converter.
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IGBT Converter (3ph)

The electrical circuit for the converter is shown below:

–

a

b

c

+

Parameters For a description of the parameters see the documentation of the IGBT with
Diode (on page 502), the IGBT (on page 482) and the Diode (on page 411).

Probe Signals The two-level IGBT converters provide six or twelve probe signals, each a vector
containing the appropriate quantities of the individual devices: voltage, cur-
rent, conductivity, conduction loss and switching loss. The vector elements are
ordered top-to-bottom, left-to-right: a+, a-, b+, b-, c+, c-.
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15 Component Reference

IGBT Full Bridges (Series Connected)

Purpose Series-connected IGBT full-bridge inverters

Library Electrical / Power Modules

Description This component implements multiple series-connected inverter cells for use in
modular multilevel converters. All control signals as well as the DC link termi-
nals are vectorized with their width matching the number of cells. The compo-
nent offers two configurations:

Switched All power semiconductors are modeled with ideal switches. The in-
dividual IGBTs are controlled with logical gate signals. An IGBT is on if the
corresponding gate signal is not zero. For compatibility with the averaged con-
figuration it is recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The component as a whole is modeled with controlled
voltage and current sources. The DC sides of the inverter cells have current
source behavior and and must be connected to positively biased capacitors or
voltage sources. The DC sides must remain galvanically isolated from each
other. The output terminals are typically connected to an inductor. The control
inputs are the relative on-times of the IGBTs with values between 0 and 1.

In the average configuration the inverters can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values 0
and 1.

• The control signals are the duty cycles of the individual IGBTs. They are ei-
ther computed directly from the modulation index or by periodically averag-
ing the digital gate signals over a fixed period of time, e.g. using the Periodic
Average block (see page 589). The averaging period does not need to be syn-
chronized with the PWM and can be as large as the inverse of the switching
frequency.

In both use cases, the average implementation correctly accounts for blanking
times, i.e. when during commutation both IGBTs in one inverter leg are turned
off. It also supports discontinuous conduction mode, e.g. when charging the DC
link capacitors via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies. It can also increase the speed of offline
simulations, because the number of internal switches is greatly reduced.
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IGBT Full Bridges (Series Connected)

Note The sub-cycle average implementation cannot model a shoot-through,
i.e. the situation where both IGBTs in a leg are turned on at the same time.
Therefore, the sum of the control signals for the upper and lower IGBT in a leg
must not exceed 1 at any time. Since the DC sides are not clamped, the DC volt-
ages must never become negative.

Parameters Configuration
Switched or averaged circuit model.

Number of cells
Number of series-connected full-bridge inverters.

Assertions
When set to on, the block will flag an error if the sum of the control signals
for the upper and lower IGBT in a leg exceeds 1.
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15 Component Reference

IGBT Half Bridge

Purpose 2-level half-bridge IGBT module

Library Electrical / Power Modules

Description This power module implements a single leg of 2-level voltage source inverter. It
offers two configurations:

Switched The power semiconductors are modeled with ideal switches. The
individual IGBTs are controlled with logical gate signals. An IGBT is on if the
corresponding gate signal is not zero. For compatibility with the averaged con-
figuration it is recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The module as a whole is modeled with controlled volt-
age and current sources. The DC side of the inverter has current source behav-
ior and must be connected to a positively biased capacitor or voltage source.
The output terminal is typically connected to an inductor. The control inputs
are the relative on-times of the IGBTs with values between 0 and 1.

In the average configuration the half bridge can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values 0
and 1.

• The control signals are the duty cycles of the individual IGBTs. They are ei-
ther computed directly from the modulation index or by periodically averag-
ing the digital gate signals over a fixed period of time, e.g. using the Periodic
Average block (see page 589). The averaging period does not need to be syn-
chronized with the PWM and can be as large as the inverse of the switching
frequency.

In both use cases, the average implementation correctly accounts for blanking
times, i.e. when during commutation both IGBTs are turned off. It also sup-
ports discontinuous conduction mode, e.g. when charging the DC link capacitor
via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies.
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IGBT Half Bridge

Note The sub-cycle average implementation cannot model a shoot-through,
i.e. the situation where both IGBTs in a leg are turned on at the same time.
Therefore, the sum of the control signals for the upper and lower IGBT must
not exceed 1 at any time. Since the DC side is not clamped, the DC voltage
must never become negative.

Parameters Configuration
Switched or averaged circuit model.

Assertions
When set to on, the block will flag an error if the sum of the control signals
for the upper and lower IGBT exceeds 1.
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15 Component Reference

IGBT Half Bridges (Low-/High-Side Connected)

Purpose Series-connected IGBT half-bridge inverters

Library Electrical / Power Modules

Description These components implement multiple series-connected inverter cells for use in
modular multilevel converters. All control signals as well as the DC link termi-
nals are vectorized with their width matching the number of cells. The compo-
nents offer two configurations:

Switched All power semiconductors are modeled with ideal switches. The in-
dividual IGBTs are controlled with logical gate signals. An IGBT is on if the
corresponding gate signal is not zero. For compatibility with the averaged con-
figuration it is recommended to use the value 1 for non-zero gate signals.

Sub-cycle average The component as a whole is modeled with controlled
voltage and current sources. The DC sides of the inverter cells have current
source behavior and and must be connected to positively biased capacitors or
voltage sources. The DC sides must remain galvanically isolated from each
other. The output terminals are typically connected to an inductor. The control
inputs are the relative on-times of the IGBTs with values between 0 and 1.

In the average configuration the inverters can be operated in two ways:

• The control signals are instantaneous logical gate signals having the values 0
and 1.

• The control signals are the duty cycles of the individual IGBTs. They are ei-
ther computed directly from the modulation index or by periodically averag-
ing the digital gate signals over a fixed period of time, e.g. using the Periodic
Average block (see page 589). The averaging period does not need to be syn-
chronized with the PWM and can be as large as the inverse of the switching
frequency.

In both use cases, the average implementation correctly accounts for blanking
times, i.e. when during commutation both IGBTs in one inverter cell are turned
off. It also supports discontinuous conduction mode, e.g. when charging the DC
link capacitors via the reverse diodes.

Since the duty cycle is simulated accurately even with relatively large time
steps, the average configuration is particularly well suited for real-time simu-
lations with high switching frequencies. It can also increase the speed of offline
simulations, because the number of internal switches is greatly reduced.
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IGBT Half Bridges (Low-/High-Side Connected)

Note The sub-cycle average implementation cannot model a shoot-through,
i.e. the situation where both IGBTs in a leg are turned on at the same time.
Therefore, the sum of the control signals for the upper and lower IGBT must
not exceed 1 at any time. Since the DC sides are not clamped, the DC voltages
must never become negative.

Parameters Configuration
Switched or averaged circuit model.

Number of cells
Number of series-connected half-bridge inverters.

Assertions
When set to on, the block will flag an error if the sum of the control signals
for the upper and lower IGBT exceeds 1.
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15 Component Reference

IGBT with Diode

Purpose Ideal IGBT with ideal anti-parallel diode

Library Electrical / Power Semiconductors

Description This model of an Insulated Gate Bipolar Transistor has an integrated anti-
parallel diode. The diode is usually required in AC applications such as voltage
source inverters.

This device is modeled as a single ideal switch that closes when the gate signal
is not zero or the voltage becomes negative and opens when the gate signal is
zero and the current becomes positive.

Note Due to the switching conditions described above, this device cannot be
turned off actively while the current is exactly zero. This may result in unex-
pected voltage waveforms if the device is used e.g. in an unloaded converter.

To resolve this problem, either use an individual IGBT (see page 482) with an
individual anti-parallel Diode (see page 411), or allow a small non-zero load cur-
rent to flow by connecting a large load resistance to the converter.

Parameters Initial conductivity
Initial conduction state of the device. The device is initially blocking if the
parameter evaluates to zero, otherwise it is conducting. This parameter
may either be a scalar or a vector corresponding to the implicit width of the
component. The default value is 0.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapters “Thermal Modeling” (on
page 131) and “Losses of Semiconductor Switch with Diode” (on page 161).

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
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junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).

Probe Signals Device voltage
The voltage measured between collector/cathode and emitter/anode. The
device voltage can never be negative.

Device current
The current through the device. The current is positive if it flows through
the IGBT from collector to emitter and negative if it flows through the diode
from anode to cathode.

Device gate signal
The gate input signal of the device.

Device conductivity
Conduction state of the internal switch. The signal outputs 0 when the de-
vice is blocking, and 1 when it is conducting.

Device junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

Device conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Device switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.
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IGBT with Limited di/dt

Purpose Dynamic IGBT model with finite current slopes during turn-on and turn-off

Library Electrical / Power Semiconductors

Description In contrast to the ideal IGBT model (see page 482) that switches instanta-
neously, this model includes collector current transients during switching.
Thanks to the continuous current decay during turn-off, stray inductances may
be connected in series with the device. In converter applications, the di/dt lim-
itation during turn-on determines the magnitude of the reverse recovery effect
in the free-wheeling diodes.

This IGBT model is used to simulate overvoltages produced by parasitic induc-
tances in the circuit. Since the voltage and current transient waveforms are
simplified, the model is not suited for the simulation of switching losses.

Note

• Due to the small time-constants introduced by the turn-on and turn-off tran-
sients a stiff solver is recommended for this device model.

• If multiple IGBTs are connected in series, the off-resistance may not be infi-
nite.

The behavior of this IGBT model is demonstrated with the following test cir-
cuit. The free-wheeling diode for the inductive load is modeled with reverse re-
covery (see page 413).

Gate1
1

L_dc
V_dc

L_sigma

Drr1

IGBT2

504



IGBT with Limited di/dt

The diagram below shows the collector current iC(t) of the IGBT and the result-
ing collector-emitter voltage vCE(t) during switching:

v
CE

0

100 %

t
f

t
r

t

i
C

t
off

t
on

0
10 %

90 %
100 %

Collector current and collector-emitter voltage

At t = toff the gate signal becomes zero, and the device current iC begins to fall.
The current slope follows an aperiodic oscillation

iC(t) = iC(toff)

e−2.4 (t− toff)

tf

(
1 +

2.4 (t− toff)

tf

)
where tf is the fall time specified in the component parameters. As illustrated
in the diagram, the maximum rate-of-change during turn-off is determined by tf
.

At t = ton a positive gate signal is applied. Unless the rate-of-change is limited
by other circuit components, the current rises linearly with constant di/dt. The
maximum di/dt depends on the rated continuous collector current IC and the
rise time tr specified in the component parameters:
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dimax

dt
= 0.8 · IC

tr

The second diagram shows the collector current transients for different on-state
currents. It can be seen that the fall time is independent of the on-state cur-
rent. Since di/dt during turn-on is constant, the actual rise time is proportional
to the on-state current. In a real IGBT, the rise time would only vary slightly
with different on-state currents. Hence, assuming constant di/dt is a worst-case
estimate in respect of the reverse-recovery current in the free-wheeling diode.

t

i
C

t
off

t
on

0

50 %

75 %

100 %

Parameters Blocking voltage
Maximum voltage VCES in volts (V) that under any conditions should be ap-
plied between collector and emitter.

Continuous collector current
Maximum dc current IC in amperes (A) that the IGBT can conduct.

Forward voltage
Additional dc voltage Vf in volts (V) between collector and emitter when the
IGBT is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Off-resistance
The resistance Roff of the blocking device, in ohms (Ω). The default is 1e6.
This parameter may be set to inf unless multiple IGBTs are connected in
series.

Rise time
Time tr in seconds (s) between instants when the collector current has risen
from 10% to 90% of the continuous collector current IC (see figure above).
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Fall time
Time tf in seconds (s) between instants when the collector current has
dropped from 90% to 10% of its initial value along an extrapolated straight
line tangent to the maximum rate-of-change of the current (see figure
above).

Stray inductance
Internal inductance Lσ in henries (H) measured between the collector and
emitter terminals.

Initial current
The initial current through the component at simulation start, in amperes
(A). The default is 0.

Probe Signals IGBT voltage
The voltage measured between collector and emitter.

IGBT current
The current through the IGBT flowing from collector to emitter.

IGBT conductivity
Conduction state of the internal switch. The signal outputs 0 when the
IGBT is blocking, and 1 when it is conducting.
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IGCT (Reverse Blocking)

Purpose Ideal IGCT with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The Integrated Gate Commutated Thyristor is a semiconductor switch that is
controlled via the external gate. It conducts a current from anode to cathode
only if the gate signal is not zero.

Parameters The following parameters may either be scalars or vectors corresponding to the
implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
IGCT is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the IGCT. The IGCT is initially blocking if the
parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on page
131). If no thermal description is given, the losses are calculated based on
the voltage drop von = Vf +Ron · i.

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).
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Probe Signals IGCT voltage
The voltage measured between anode and cathode.

IGCT current
The current through the IGCT flowing from anode to cathode.

IGCT gate signal
The gate input signal of the IGCT.

IGCT conductivity
Conduction state of the internal switch. The signal outputs 0 when the
IGCT is blocking, and 1 when it is conducting.

IGCT junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

IGCT conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

IGCT switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.
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IGCT (Reverse Conducting)

Purpose Ideal IGCT with ideal anti-parallel diode

Library Electrical / Power Semiconductors

Description This model of an Integrated Gate Commutated Thyristor has an integrated
anti-parallel diode. The diode is usually included in power IGCT packages.

Parameters Initial conductivity
Initial conduction state of the device. The device is initially blocking if the
parameter evaluates to zero, otherwise it is conducting. This parameter
may either be a scalar or a vector corresponding to the implicit width of the
component. The default value is 0.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapters “Thermal Modeling” (on
page 131) and “Losses of Semiconductor Switch with Diode” (on page 161).

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).

Probe Signals Device voltage
The voltage measured between anode and cathode. The device voltage can
never be negative.

Device current
The current through the device. The current is positive if it flows through
the IGCT from anode to cathode and negative if it flows through the diode
from cathode to anode.

510



IGCT (Reverse Conducting)

Device gate signal
The gate input signal of the device.

Device conductivity
Conduction state of the internal switch. The signal outputs 0 when the de-
vice is blocking, and 1 when it is conducting.

Device junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

Device conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Device switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.
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Induction Machine (Slip Ring)

Purpose Non-saturable induction machine with slip-ring rotor

Library Electrical / Machines

Description This model of a slip-ring induction machine can only be used with the continu-
ous state-space method. If you want to use the discrete state-space method or
if you need to take saturation into account, please use the Induction Machine
with Saturation (see page 522).

The machine model is based on a stationary reference frame (Clarke transfor-
mation). A sophisticated implementation of the Clarke transformation facili-
tates the connection of external inductances in series with the stator windings.
However, external inductors cannot be connected to the rotor windings due to
the current sources in the model. In this case, external inductors must be in-
cluded in the leakage inductance of the rotor.

The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed the machine is operating in motor mode, oth-
erwise in generator mode. All electrical variables and parameters are viewed
from the stator side. In the component icon, phase a of the stator and rotor
windings is marked with a dot.

In order to inspect the implementation, please select the component in your cir-
cuit and choose Look under mask from the Subsystem submenu of the Edit
menu. If you want to make changes, you must first choose Break library link
and then Unprotect, both from the same menu.

Electrical System

The rotor flux is computed as

Ψr,d = L′
lr i

′
r,d + Lm

(
is,d + i′r,d

)
Ψr,q = L′

lr i
′
r,q + Lm

(
is,q + i′r,q

)
The three-phase voltages vs,ab and vs,bc at the stator terminals are transformed
into dq quantities: vs,d

vs,q

 =

 2
3

1
3

0 1√
3

 ·

 vs,ab

vs,bc


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Rs Lls

Lm

L'lr -ω∙ Ψ 'r,q R'r

+

−

vs,d

+

−

v'r,d

is,d i'r,d

d-axis

Rs Lls

Lm

L'lr R'r
-ω∙ Ψ 'r,d

+

−
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+

−

v'r,q
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Likewise, the stator currents in the stationary reference frame are transformed
back into three-phase currents:

is,a

is,b

is,c

 =


1 0

− 1
2

√
3
2

− 1
2 −

√
3
2

 ·

 is,d

is,q


Similar equations apply to the voltages and currents at the rotor terminals with
θ being the electrical rotor position: v′r,d

v′r,q

 =
2

3

 cos θ − cos
(
θ − 2π

3

)
sin θ − sin

(
θ − 2π

3

)
 ·

 v′r,ab

v′r,bc




i′r,a

i′r,b

i′r,c

 =


cos θ sin θ

cos
(
θ + 2π

3

)
sin

(
θ + 2π

3

)
cos

(
θ − 2π

3

)
sin

(
θ − 2π

3

)
 ·

 i′r,d

i′r,q



Electro-Mechanical System

Electromagnetic torque:
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Te =
3

2
pLm

(
is,q i

′
r,d − is,d i

′
r,q

)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

ω = pωm

Mechanical rotor angle θm:

θ̇m = ωm

θ = p θm

Parameters Stator resistance
Stator winding resistance Rs in ohms (Ω).

Stator leakage inductance
Stator leakage inductance Lls in henries (H).

Rotor resistance
Rotor winding resistance R′

r in ohms (Ω), referred to the stator side.

Rotor leakage inductance
Rotor leakage inductance L′

lr in henries (H), referred to the stator side.

Magnetizing inductance
Magnetizing inductance Lm in henries (H), referred to the stator side.

Inertia
Combined rotor and load inertia J in (Nms2).

Friction coefficient
Viscous friction F in (Nms).

Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical rotor speed ωm,0 in radians per second

(
rad
s

)
.

Initial rotor position
Initial mechanical rotor angle θm,0 in radians. If θm,0 is an integer multiple
of 2π/p, the stator windings are aligned with the rotor windings at simula-
tion start.
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Initial stator currents
A two-element vector containing the initial stator currents is,a,0 and is,b,0 of
phases a and b in amperes (A).

Initial stator flux
A two-element vector containing the initial stator flux Ψ′

s,d,0 and Ψ′
s,q,0 in

the stationary reference frame in (Vs).

Probe Signals Stator phase currents
The three-phase stator winding currents is,a, is,b and is,c, in amperes (A).
Currents flowing into the machine are considered positive.

Rotor phase currents
The three-phase rotor winding currents i′r,a, i′r,b and i′s,c in amperes (A), re-
ferred to the stator side. Currents flowing into the machine are considered
positive.

Stator flux (dq)
The stator flux linkages Ψs,d and Ψs,q in the stationary reference frame in
(Vs):

Ψs,d = Lls is,d + Lm

(
is,d + i′r,d

)
Ψs,q = Lls is,q + Lm

(
is,q + i′r,q

)
Magnetizing flux (dq)

The magnetizing flux linkages Ψm,d and Ψm,q in the stationary reference
frame in (Vs):

Ψm,d = Lm

(
is,d + i′r,d

)
Ψm,q = Lm

(
is,q + i′r,q

)
Rotor flux (dq)

The rotor flux linkages Ψ′
r,d and Ψ′

r,q in the stationary reference frame in
(Vs).

Rotational speed
The rotational speed ωm of the rotor in radians per second

(
rad
s

)
.

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in (Nm).
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Induction Machine (Open Stator Windings)

Purpose Non-saturable induction machine with squirrel-cage rotor and open stator
windings

Library Electrical / Machines

Description This model of a squirrel-cage induction machine can only be used with the con-
tinuous state-space method. The machine model is based on a stationary ref-
erence frame (Clarke transformation). A sophisticated implementation of the
Clarke transformation facilitates the connection of external inductances in se-
ries with the stator windings.

The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed the machine is operating in motor mode, oth-
erwise in generator mode. All electrical variables and parameters are viewed
from the stator side. In the component icon, the positive terminal of phase a of
the stator windings is marked with a dot.

In order to inspect the implementation, please select the component in your cir-
cuit and choose Look under mask from the Subsystem submenu of the Edit
menu.

Electrical System:

The rotor flux is computed as

Ψr,d = L′
lr i

′
r,d + Lm

(
is,d + i′r,d

)
Ψr,q = L′

lr i
′
r,q + Lm

(
is,q + i′r,q

)
The three-phase voltages vs,a, vs,b and vs,c across the individual stator windings
are transformed into dq0 quantities:

vs,d

vs,q

vs,0

 =


2
3 − 1

3 − 1
3

0 1√
3

− 1√
3

1
3

1
3

1
3

 ·


vs,a

vs,b

vs,c


Likewise, the stator currents in the stationary reference frame are transformed
back into three-phase currents:
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Rs Lls
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-ω∙ Ψ 'r,q
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d-axis
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Lm

L'lr R'r
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+

−
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Lls

+

−

vs,0

is,0

0-axis


is,a

is,b

is,c

 =


1 0 1

− 1
2

√
3
2 1

− 1
2 −

√
3
2 1

 ·


is,d

is,q

is,0



Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
pLm

(
is,q i

′
r,d − is,d i

′
r,q

)
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Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

ω = pωm

Mechanical rotor angle θm:

θ̇m = ωm

θ = p θm

Parameters Most parameters for the Induction Machine with slip-ring rotor (see page 512)
are also applicable for this machine. Only the following parameter differs:

Initial stator currents
A three-element vector containing the initial stator currents is,a,0, is,b,0 and
is,c,0 of phase a, b and c in amperes (A).

Probe Signals Most probe signals for the Induction Machine with slip-ring rotor (see page 512)
are also available with this machine. Only the following probe signal is differ-
ent:

Rotor currents
The rotor currents i′r,d and i′r,q in the stationary reference frame in amperes
(A), referred to the stator side.
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Induction Machine (Squirrel Cage)

Purpose Non-saturable induction machine with squirrel-cage rotor

Library Electrical / Machines

Description The machine model is based on a stationary reference frame (Clarke transfor-
mation). A sophisticated implementation of the Clarke transformation facili-
tates the connection of external inductances in series with the stator windings.

The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed the machine is operating in motor mode, oth-
erwise in generator mode. All electrical variables and parameters are viewed
from the stator side. In the component icon, phase a of the stator winding is
marked with a dot.

In order to inspect the implementation, please select the component in your cir-
cuit and choose Look under mask from the Subsystem submenu of the Edit
menu.

Electrical System
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L'lr R'r
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−
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The rotor flux is computed as

Ψr,d = L′
lr i

′
r,d + Lm

(
is,d + i′r,d

)
Ψr,q = L′

lr i
′
r,q + Lm

(
is,q + i′r,q

)
The three-phase voltages vs,ab and vs,bc at the stator terminals are transformed
into dq quantities: vs,d

vs,q

 =

 2
3

1
3

0 1√
3

 ·

 vs,ab

vs,bc


Likewise, the stator currents in the stationary reference frame are transformed
back into three-phase currents:

is,a

is,b

is,c

 =


1 0

− 1
2

√
3
2

− 1
2 −

√
3
2

 ·

 is,d

is,q



Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
pLm

(
is,q i

′
r,d − is,d i

′
r,q

)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

ω = pωm

Mechanical rotor angle θm:

θ̇m = ωm

θ = p θm

Parameters Same as for the Induction Machine with slip-ring rotor (see page 512).
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Probe Signals Most probe signals for the Induction Machine with slip-ring rotor (see page 512)
are also available with this squirrel-cage machine. Only the following probe sig-
nal is different:

Rotor currents
The rotor currents i′r,d and i′r,q in the stationary reference frame in amperes
(A), referred to the stator side.
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Induction Machine with Saturation

Purpose Induction machine with slip-ring rotor and main-flux saturation

Description The Induction Machine with Saturation models main flux saturation by means
of a continuous function.
The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed the machine is operating in motor mode, oth-
erwise in generator mode. All electrical variables and parameters are viewed
from the stator side. In the component icon, phase a of the stator and rotor
winding is marked with a dot.

Electrical System:
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Lm

L'lr -ω∙ Ψ 'r,q R'r
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v'r,d
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The rotor flux is defined as

Ψr,d = L′
lr i

′
r,d + Lm

(
is,d + i′r,d

)
Ψr,q = L′

lr i
′
r,q + Lm

(
is,q + i′r,q

)
.

The machine model offers two different implementations of the electrical sys-
tem: a traditional stationary reference frame and a voltage behind reactance
formulation.
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Stationary Reference Frame This implementation is based on machine
equations in the stationary reference frame (Clarke transformation). Constant
coefficients in the stator and rotor equations make the model numerically ef-
ficient. However, interfacing the reference frame with the external 3-phase
network may be difficult. Since the coordinate transformations are based on
voltage-controlled current sources inductors and naturally commutated devices
such as diode rectifiers may not be directly connected to the stator terminals. In
these cases, fictitious RC snubbers are required to create the necessary voltages
across the terminals. The implementation can be used with both the continuous
and the discrete state-space method.

Voltage Behind Reactance This formulation allows for direct interfacing of
arbitrary external networks with the 3-phase stator terminals. The rotor dy-
namics are expressed using explicit state-variable equations while the stator
branch equations are described in circuit form. However, due to the resulting
time-varying inductance matrices, this implementation is numerically less effi-
cient than the traditional reference frame.

In both implementations, the value of the main flux inductances Lm,d and Lm,q

are not constant but depend on the main flux linkage Ψm as illustrated in the
Ψm/im diagram. For flux linkages far below the transition flux ΨT, the relation-

∂Ψ/∂i = L
m,0

∂Ψ/∂i = L
m,sat

f
T
 = 4

f
T
 = 2

f
T
 = 1

f
T
 = 0.5

i
m

Ψ
m

Ψ
T

ship between flux and current is almost linear and is determined by the unsat-
urated magnetizing inductance Lm,0. For large flux linkages the relationship is
governed by the saturated magnetizing inductance Lm,sat. ΨT defines the knee
of the transition between unsaturated and saturated main flux inductance. The
tightness of the transition is defined with the form factor fT. If you do not have
detailed information about the saturation characteristic of your machine, fT = 1
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is a good starting value. The function

plsaturation(Lm0,Lmsat,PsiT,fT)

plots the main flux vs. current curve and the magnetizing inductance vs. cur-
rent curve for the parameters specified.

The model accounts for steady-state cross-saturation, i.e. the steady-state mag-
netizing inductances along the d-axis and q-axis are functions of the currents
in both axes. In the implementation, the stator currents and the main flux link-
age are chosen as state variables. With this type of model, the representation of
dynamic cross-saturation can be neglected without affecting the machine’s per-
formance. The computation of the time derivative of the main flux inductance is
not required.

In order to inspect the implementation, please select the component in your cir-
cuit and choose Look under mask from the Subsystem submenu of the Edit
menu. If you want to make changes, you must first choose Break library link
and then Unprotect, both from the same menu.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (is,q Ψs,d − is,d Ψs,q)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

ω = pωm

Mechanical rotor angle θm:

θ̇m = ωm

θ = p θm
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Parameters Model
Implementation in the stationary reference frame or as a voltage behind
reactance.

Stator resistance
Stator winding resistance Rs in ohms (Ω).

Stator leakage inductance
Stator leakage inductance Lls in henries (H).

Rotor resistance
Rotor winding resistance R′

r in ohms (Ω), referred to the stator side.

Rotor leakage inductance
Rotor leakage inductance L′

lr in henries (H), referred to the stator side.

Unsaturated magnetizing inductance
Unsaturated main flux inductance Lm,0, in henries (H), referred to the sta-
tor side.

Saturated magnetizing inductance
Saturated main flux inductance Lm,sat in henries (H), referred to the stator
side. If you do not want to model saturation, set Lm,sat = Lm,0.

Magnetizing flux at saturation transition
Transition flux linkage ΨT, in (Vs), defining the knee between unsaturated
and saturated main flux inductance.

Tightness of saturation transition
Form factor fT defining the tightness of the transition between unsaturated
and saturated main flux inductance. The default is 1.

Inertia
Combined rotor and load inertia J in (Nms2).

Friction coefficient
Viscous friction F in (Nms).

Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical rotor speed ωm,0 in radians per second

(
rad
s

)
.

Initial rotor position
Initial mechanical rotor angle θm,0 in radians. If θm,0 is an integer multiple
of 2π/p, the stator windings are aligned with the rotor windings at simula-
tion start.
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Initial stator currents
A two-element vector containing the initial stator currents is,a,0 and is,b,0 of
phases a and b in amperes (A).

Initial stator flux
A two-element vector containing the initial stator flux Ψs,d,0 and Ψs,q,0 in
the stationary reference frame in (Vs).

Probe Signals Stator phase currents
The three-phase stator winding currents is,a, is,b and is,c, in amperes (A).
Currents flowing into the machine are considered positive.

Rotor phase currents
The three-phase rotor winding currents i′r,a, i′r,b and i′s,c in amperes (A), re-
ferred to the stator side. Currents flowing into the machine are considered
positive.

Stator flux (dq)
The stator flux linkages Ψs,d and Ψs,q in the stationary reference frame in
(Vs).

Magnetizing flux (dq)
The magnetizing flux linkages Ψm,d and Ψm,q in the stationary reference
frame in (Vs).

Rotor flux (dq)
The rotor flux linkages Ψ′

r,d and Ψ′
r,q in the stationary reference frame in

(Vs), referred to the stator side.

Rotational speed
The rotational speed ωm of the rotor in radians per second

(
rad
s

)
.

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in (Nm).

References
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Inductor

Purpose Ideal inductor

Library Electrical / Passive Components

Description This component provides one or multiple ideal inductors between its two elec-
trical terminals. If the component is vectorized, a magnetic coupling can be
specified between the internal inductors. Inductors may be switched in series
only if their momentary currents are equal.

Note An inductor may not be connected in series with a current source. Doing
so would create a dependency between an input variable (the source current)
and a state variable (the inductor current) in the underlying state-space equa-
tions.

Parameters Inductance
The inductance in henries (H). All finite positive and negative values are
accepted, including 0. The default is 0.001.

In a vectorized component, all internal inductors have the same inductance
if the parameter is a scalar. To specify the inductances individually use a
vector [L1 L2 . . . Ln] . The length n of the vector determines the component’s
width:

v1

v2
...

vn

 =


L1 0 · · · 0

0 L2 · · · 0
...

...
. . .

...

0 0 · · · Ln

 ·



d
dt i1

d
dt i2

...
d
dt in


In order to model a magnetic coupling between the internal inductors enter
a square matrix. The size n of the matrix corresponds to the width of the
component. Li is the self inductance of the internal inductor and Mi,j the
mutual inductance:
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
v1

v2
...

vn

 =


L1 M1,2 · · · M1,n

M2,1 L2 · · · M2,n

...
...

. . .
...

Mn,1 Mn,2 · · · Ln

 ·



d
dt i1

d
dt i2

...
d
dt in


The inductance matrix must be invertible, i.e. it may not be singular. A sin-
gular inductance matrix results for example when two or more inductors
are ideally coupled. To model this, use an inductor in parallel with an Ideal
Transformer (see page 480).

The relationship between the coupling factor ki,j and the mutual inductance
Mi,j is

Mi,j = Mj,i = ki,j ·
√
Li · Lj

Initial current
The initial current through the inductor at simulation start, in amperes
(A). This parameter may either be a scalar or a vector corresponding to the
width of the component. The direction of a positive initial current is indi-
cated by a small arrow in the component symbol. The default of the initial
current is 0.

Probe Signals Inductor current
The current flowing through the inductor, in amperes (A). The direction of a
positive current is indicated with a small arrow in the component symbol.

Inductor voltage
The voltage measured across the inductor, in volts (V).
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Inertia

Purpose Model a rotating body with inertia

Library Mechanical / Rotational / Components

Description This component models a rotating body with inertia and two rigidly connected
flanges. The angular speed is determined by the equation

d

dt
ω =

1

J
· (τ1 + τ2)

where τ1 and τ2 are the torques acting at the two flanges towards the body.

Parameters Moment of inertia
The moment of inertia J , in

(
kg·m2

rad2

)
.

Note “Radian” is a dimensionless unit, therefore, moment of inertia values in
(kg ·m2) and (N ·m · s2) are also consistent with this definition.

Initial speed
The initial angular speed ω0, in

(
rad
s

)
.

Initial angle
The initial angle θ0, in radians. May be specified in order to provide proper
initial conditions if absolute angles are measured anywhere in the system.
Otherwise, this parameter can be left blank.

Probe Signals Speed
The angular speed of the body.

Angle
The absolute angle of the body (wrapped between −π and π).
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Initial Condition

Purpose Output specified initial value in the first simulation step

Library Control / Sources

Description The Initial Condition block outputs the initial value in the very first simulation
step and the input value at all subsequent steps.

If this block is placed inside an algebraic loop, it provides an initial guess of the
value of its output signal to be used by the equation solver at the start of a sim-
ulation. See the section “Block Sorting” (on page 31) for more information on
algebraic loops.

Note If a simulation is run from a saved simulation state, the Initial Condi-
tion block immediately outputs the input value. The Initial value parameter is
not used in this case.

Parameter Initial value
The initial output value in the first simulation step.
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Integrator

Purpose Integrate input signal with respect to time

Library Control / Continuous

Description The Integrator block outputs the integral of its input signal at the current time
step. The integrator state may saturate at an upper and lower limit, or it can be
wrapped between two limits. It can be reset to its initial value by an external
trigger signal. The initial value may be provided either via a parameter or via
an input signal.

Interaction with the Solver

Simulation with the Continuous State-Space Method When simulated
with the continuous method, the input signal is simply passed on to the solver
for integration.

Simulation with the Discrete State-Space Method When simulated with
the discrete method, the input signal is integrated within PLECS using the For-
ward Euler method.

Parameters External reset
The behaviour of the external reset input. The values rising, falling and
either cause a reset of the integrator on the rising, falling or both edges of
the reset signal. A rising edge is detected when the signal changes from 0 to
a positive value, a falling edge is detected when the signal changes from a
positive value to 0. If the value level is chosen, the output signal keeps the
initial value while the reset input is not 0.

Initial condition source
Specifies whether the initial condition is provided via the Initial condition
parameter (internal) or via an input signal (external).

Initial condition
The initial condition of the integrator. The value may be a scalar or a vector
corresponding to the implicit width of the component. This parameter is
shown only if the Initial condition source parameter is set to internal.

Show state port
Specifies whether to show an additional state output port. The state port is
updated at a slightly different point in the block execution order (i.e. before
the reset and initial condition inputs are evaluated) and may therefore be
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used to calculate an input signal for the external reset input or the initial
condition input.

Enable wrapping
When set to on, the integrator state is wrapped between the Upper wrap-
ping limit and Lower wrapping limit parameters. The default is off.
Note that wrapping is mutually exclusive with saturation.

Upper saturation limit
An upper limit for the integrator state. If the value is inf, the state is un-
limited. This parameter is visible only if Enable wrapping is set to off.

Lower saturation limit
A lower limit for the integrator state. If the value is -inf, the state is un-
limited. This parameter is visible only if Enable wrapping is set to off.

Upper wrapping limit
The upper wrapping limit for the integrator state. When the state exceeds
the upper limit, it is wrapped to the lower limit. This parameter is visible
only if Enable wrapping is set to on.

Lower wrapping limit
The lower wrapping limit for the integrator state. When the state exceeds
the lower limit, it is wrapped to the upper limit. This parameter is visible
only if Enable wrapping is set to on.

Probe Signal State
The internal state of the integrator.

Note Both the external reset input and the initial condition input have direct
feedthrough on the output signal. Therefore, feeding back the output signal to
create the reset signal or an initial value will create an algebraic loop. This can
be avoided by using the state port instead.
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JK Flip-flop

Purpose Implement edge-triggered JK flip-flop

Library Control / Logical

Description The JK flip-flop changes its output when an edge in the clock signal is detected
according to the following truth table:

J K Q /Q

0 0 No change No change

0 1 0 1

1 0 1 0

1 1 /Qprev Qprev

As long as no edge is detected in the clock signal the outputs remain stable.

When a trigger occurs and J = K = 1 the outputs are toggled, i.e change from 1
to 0 or vice versa.

The inputs J and K are latched, i.e. when a triggering edge in the clock signal is
detected the values of J and K from the previous simulation step are used to set
the output. In other words, J and K must be stable for at least one simulation
step before the flip-flop is triggered by the clock signal.

Parameters Trigger edge
The direction of the edge on which the inputs are read.

Initial state
The state of the flip-flop at simulation start.

Probe Signals J
The input signal J.

K
The input signal K.

Clk
The clock input signal.

Q
The output signals Q.
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/Q
The output signals /Q.
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Leakage Flux Path

Purpose Permeance of linear leakage flux path

Library Magnetic / Components

Description This component models a magnetic leakage flux path. It establishes a linear re-
lationship between the magnetic flux Φ and the magneto-motive force F . Mag-
netic permeance P is the reciprocal of magnetic reluctance R:

P =
1

R
=

Φ

F
This component is equivalent to the Magnetic Permeance (see page 544). The
only difference is the symbol.

Parameters Effective Permeance
Magnetic permeance of the leakage flux path, in webers per ampere-turn
(Wb/A).

Initial MMF
Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked ter-
minal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.
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Linear Core

Purpose Linear magnetic core element

Library Magnetic / Components

Description This component models a segment of a magnetic core. It establishes a linear
relationship between the magnetic flux Φ and the magneto-motive force F

Φ

F
=

µ0µrA

l

where µ0 = 4π × 10−7 N/A2 is the magnetic constant, µr is the relative perme-
ability of the material, A is the cross-sectional area and l the length of the flux
path.

Parameters Cross-sectional area
Cross-sectional area A of the flux path, in square meters (m2).

Length of flux path
Length l of the flux path, in meters (m).

Rel. permeability
Relative permeability µr of the core material.

Initial MMF
Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked ter-
minal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.

Field strength
The magnetic field strength H in the core element, in amperes per meter
(A/m).

Flux density
The magnetic flux density B in the core element, in teslas (T).
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Linear Transformer (2 Windings)

Purpose Single-phase transformer with winding resistance and optional core loss

Library Electrical / Transformers

Description This transformer models two coupled windings on the same core. The magne-
tizing inductance Lm and the core loss resistance Rm are modeled as linear el-
ements. Their values are referred to the primary side. A stiff solver is recom-
mended if Rm is not infinite.

The electrical circuit for this component is given below:

Rm

L1 R1

Lm

i1 L2 R2 i2

n2n1

In the transformer symbol, the primary side winding is marked with a little
circle. The secondary side winding is marked with a dot.

Parameters Leakage inductance
A two-element vector containing the leakage inductance of the primary side
L1 and the secondary side L2. The inductivity is given in henries (H).

Winding resistance
A two-element vector containing the resistance of the primary winding R1

and the secondary winding R2, in ohms (Ω).

Winding ratio
The ratio n1/n2 between the number of turns of the primary and secondary
winding.

Magnetizing inductance
The magnetizing inductance Lm, in henries (H). The value is referred to the
primary side.
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Core loss resistance
An equivalent resistance Rm representing the iron losses in the transformer
core. The value in ohms (Ω) is referred to the primary side.

Initial current
A two-element vector containing the initial currents on the primary side i1
and the secondary side i2, in amperes (A). The currents are considered pos-
itive if flowing into the transformer at the marked terminals. The default is
[0 0].
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Linear Transformer (3 Windings)

Purpose Single-phase transformer with winding resistance and optional core loss

Library Electrical / Transformers

Description This transformer models three coupled windings on the same core. The mag-
netizing inductance Lm and the core loss resistance Rm are modeled as linear
elements. Their values are referred to the primary side. A stiff solver is recom-
mended if Rm is not infinite.

The electrical circuit for this component is given below:

RmLm

i1

n1

n2

n3

L3 R3 i3

L2 R2 i2L1 R1

In the transformer symbol, the primary side winding is marked with a little
circle. The secondary winding is marked with a dot at the outside terminal, the
tertiary winding with a dot at the inside terminal.

Parameters Leakage inductance
A three-element vector containing the leakage inductance of the primary
side L1, the secondary side L2 and the tertiary side L3. The inductivity is
given in henries (H).

Winding resistance
A three-element vector containing the resistance of the primary winding R1,
the secondary winding R2 and the tertiary winding R3, in ohms (Ω).

No. of turns
A three-element vector containing the number of turns of the primary wind-
ing n1, the secondary winding n2 and the tertiary winding n3.

Magnetizing inductance
The magnetizing inductance Lm, in henries (H). The value is referred to the
primary side.
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Core loss resistance
An equivalent resistance Rm representing the iron losses in the transformer
core. The value in ohms (Ω) is referred to the primary side.

Initial current
A three-element vector containing the initial currents on the primary side
i1, the secondary side i2 and the tertiary side i3, in amperes (A). The cur-
rents are considered positive if flowing into the transformer at the marked
terminals. The default is [0 0 0].
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Logical Operator

Purpose Combine input signals logically

Library Control / Logical

Description The selected Logical Operator is applied to the input signals. The output of the
Logical Operator is 1 if the logical operation returns true, otherwise 0. In case
of a single input, the operator is applied to all elements of the input vector.

Parameters Operator
Chooses which logical operator is applied to the input signals. Available op-
erators are
• AND y = un & un−1 & . . . & u1 & u0

• OR y = un | un−1 | . . . | u1 | u0

• NAND y = ∼(un & un−1 & . . . & u1 & u0)

• NOR y = ∼(un | un−1 | . . . | u1 | u0)

• XOR y = un xor un−1 xor . . . xor u1 xor u0

• NOT y = ∼u

Number of inputs
The number of input terminals. If the NOT operator is selected, the number
of inputs is automatically set to 1.

Probe Signals Input i
The ith input signal.

Output
The block output signal.
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Magnetic Multiplexer

Purpose Combine several magnetic connections into single vector

Library Magnetic / Connectivity

Description This multiplexer combines several magnetic connections into one vector connec-
tion. The individual connections may themselves be vectors. In the block icon,
the first individual connection is marked with a dot.

Parameter Width
This parameter allows you to specify the number and/or width of the indi-
vidual connections. You can choose between the following formats for this
parameter:

Scalar: A scalar specifies the number of individual connections each having
a width of 1.

Vector: The length of the vector determines the number of individual con-
nections. Each element specifies the width of the corresponding individual
connections.
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Magnetic Permeance

Purpose Linear magnetic permeance

Library Magnetic / Components

Description This component provides a magnetic flux path. It establishes a linear relation-
ship between the magnetic flux Φ and the magneto-motive force F . Magnetic
permeance P is the reciprocal of magnetic reluctance R:

P =
1

R
=

Φ

F

Parameters Permeance
Magnetic permeance of the flux path, in webers per ampere-turn (Wb/A).

Initial MMF
Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked ter-
minal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.
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Magnetic Port

Purpose Add magnetic connector to subsystem

Library Magnetic / Connectivity

Description Magnetic ports are used to establish magnetic connections between a schematic
and the subschematic of a subsystem (see page 695). If you copy a Magnetic
Port block into the schematic of a subsystem, a terminal will be created on the
subsystem block. The name of the port block will appear as the terminal label.
If you choose to hide the block name by unselecting the show name option in
the block menu, the terminal label will also disappear.

Terminals can be moved around the edges of the subsystem by holding down
the Shift key while dragging the terminal with the left mouse button or by us-
ing the middle mouse button.

Magnetic Ports in a Top-Level Schematic

In PLECS Blockset, if a Magnetic Port is placed in a top-level schematic, the
PLECS Circuit block in the Simulink model will show a corresponding mag-
netic terminal, which may be connected with other magnetic terminals of the
same or a different PLECS Circuit block. The Magnetic Port is also assigned a
unique physical port number. Together with the parameter Location on cir-
cuit block the port number determines the position of the magnetic terminal
of the PLECS Circuit block.

For compatibility reasons you can also place an Magnetic Port in a top-level
schematic in PLECS Standalone. However, since there is no parent system to
connect to, such a port will act like an isolated node.

Parameter Width
The width of the connected magnetic path. The default auto means that the
width is inherited from connected components.

Port number
If a Magnetic Port is placed in a top-level schematic in PLECS Blockset, this
parameter determines the position, at which the corresponding terminal
appears on the PLECS Circuit block.
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Location on circuit block
If a Magnetic Port is placed in a top-level schematic in PLECS Blockset, this
parameter specifies the side of the PLECS Circuit block on which the corre-
sponding terminal appears. By convention, left refers to the side on which
also input terminals are shown, and right refers to the side on which also
output terminals are shown.
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Magnetic Resistance

Purpose Effective magnetic resistance for modeling losses

Library Magnetic / Components

Description Magnetic resistances (analogous to electrical resistors) are used to model
frequency-depending losses in the magnetic circuit. They can be connected in
series or in parallel to a permeance, depending on the nature of the specific loss.
The energy relationship is maintained as the power

Ploss = F Φ̇ = F 2/Rm

converted into heat in a magnetic resistance corresponds to the power lost in
the electrical circuit.

Parameter Resistance
Effective magnetic resistance Rm, in (A · (Wb/s)−1).

Probe Signal MMF
The magneto-motive force measured from the marked to the unmarked ter-
minal, in ampere-turns (A).
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Magnetic Selector

Purpose Select or reorder elements from vector connection

Library Magnetic / Connectivity

Description The Magnetic Selector block connects the individual elements of the output con-
nection to the specified elements of the input connection. The input connection
is marked with a dot.

Parameters Input width
The width of the input connection.

Output indices
A vector with the indices of the input elements that the output connection
should contain.
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Manual Double Switch

Purpose Manual changeover switch with two positions

Library Electrical / Switches

Description This changeover switch provides an ideal switch with two positions. The posi-
tion can be toggled between upper (0) and lower (1) by double-clicking the com-
ponent. Which input signal currently is connected to the output signal is indi-
cated in the icon.

Parameter Switch position
The current position of the switch. Possible values are 0 (upper position)
and 1 (lower position).

Probe Signal Switch position
State of the internal switch. The signal outputs 0 if the switch is in the up-
per position, and 1 if it is in the lower position.
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Manual Signal Switch

Purpose Switch between two input signals by double-clicking the component

Library Control / Discontinuous

Description The Signal Switch can be in the on-state or the off-state, connecting the first or
the second input to the output, respectively. The state can be toggled by double-
clicking the component. Which input signal currently is connected to the output
signal is indicated in the icon.

Parameter State
The current switch state, either “on” or “off”.

Probe Signals Inputs
The block input signals.

Output
The block output signal.

Switch position
The current state of the switch. The output is 0 while the switch is in the
off-state and 1 while it is in the on-state.
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Manual Switch

Purpose Manual on-off switch

Library Electrical / Switches

Description This Switch provides an ideal short or open circuit between its two electrical
terminals. The position can be toggled between upper (0, off) and lower (1, on)
by double-clicking the component. Which input signal currently is connected to
the output signal is indicated in the icon.

Parameter Switch position
The current position of the switch. Possible values are 0 (upper position, off)
and 1 (lower position, on).

Probe Signal Switch position
State of the internal switch. The signal outputs 0 if the switch is in the up-
per position (off), and 1 if it is in the lower position (on).
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Manual Triple Switch

Purpose Manual changeover switch with three positions

Library Electrical / Switches

Description This changeover switch provides an ideal switch with three positions. The po-
sition can be toggled between upper (−1), middle (0) and lower (1) by double-
clicking the component. Which input signal currently is connected to the output
signal is indicated in the icon.

Parameter Switch position
The current position of the switch. Possible values are -1 (upper position), 0
(middle position) and 1 (lower position).

Probe Signal Switch position
State of the internal switch. The signal outputs 0 if the switch is in the mid-
dle position, 1 if it is in the lower position and −1 if it is in the upper posi-
tion.
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Mass

Purpose Model a sliding body with inertia

Library Mechanical / Translational / Components

Description This component models a sliding body with inertia and two rigidly connected
flanges. The translational speed is determined by the equation

d

dt
v =

1

m
· (F1 + F2)

where F1 and F2 are the forces acting at the two flanges towards the body.

Parameters Mass
The mass m, in (kg).

Initial speed
The initial speed v0, in

(
m
s

)
.

Initial position
The initial position x0, in meters (m). May be specified in order to provide
proper initial conditions if absolute positions are measured anywhere in the
system. Otherwise, this parameter can be left blank.

Probe Signals Speed
The speed of the body.

Position
The absolute position of the body.
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Math Function

Purpose Apply specified mathematical function

Library Control / Math

Description The Math Function block calculates the output by applying the specified func-
tion to the input. For functions that require two inputs, the first input is
marked with a black dot.

Parameter Function
Chooses which function is applied to the input signals. Available functions
are
• square y = u2

• square root y =
√
u

• exponential y = eu

• logarithm y = ln(u)

• power y = uv

• mod y = mod(u, v)

• rem y = rem(u, v)

mod and rem both return the floating-point remainder of u/v. If u and v have
different signs, the result of rem has the same sign as u while the result of
mod has the same sign as v.

Probe Signals Input i
The ith input signal.

Output
The block output signal.
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Memory

Purpose Provide input signal from previous major time step

Library Control / Delays

Description The Memory block delays the input signal by a single major time step taken by
the solver.

Note

• The Memory block implicitly has a semi-continuous sample time. If you need
to specify a sample time explicitly, please use the Delay block instead (see
page 410).

• If a variable-step solver is used, the delay time of the Memory block also
varies. If you use the Memory block to decouple an algebraic loop, this will
produce a dead-time with an uncontrolled jitter. Please consider using a low
pass filter instead.

Parameter Initial condition
The initial output during the first major time step.

Probe Signals Input
The input signal.

Output
The output signal.
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Meter (3-Phase)

Purpose Measure voltages and currents of 3-phase system

Library Electrical / Meters

Description The meter block acts as a set of volt- and ammeters. Voltages can be measured
from line to ground (Va, Vb and Vc) or from line to line (Vab, Vbc, Vca) depending
on the Voltage measurement parameter. The output for voltage and current
is a vectorized signal with three elements.

Parameter Voltage measurement
Determine whether the voltages are measured from line to ground or from
line to line.

Probe Signals Measured voltage
The measured voltages as a vector with three elements.

Measured current
The measured currents as a vector with three elements.
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Minimum / Maximum

Purpose Output input signal with highest resp. lowest value

Library Control / Math

Description The Minimum / Maximum block compares its input signals against each other.
If the Operation parameter is set to Minimum, the output will be set to the
value of the input signal with the lowest value. If the Operation parameter
is set to Maximum, the output will be set to the value of the input signal with the
highest value.

In case of a single input, all elements of the input vector are compared. Vector-
ized input signals of the same width are compared element wise and result in
a vectorized output signal. If vectorized and scalar input signals are mixed, the
scalar input signals are expanded to the width of the vectorized input signals.

Parameters Operation
Selects between Minimum and Maximum as described above.

Number of inputs
The number of inputs.

Probe Signals Input i
The ith input signal.

Output
The block output signal.

557



15 Component Reference

MMF Meter

Purpose Output the measured magneto-motive force

Library Magnetic / Meters

Description The MMF Meter measures the magneto-motive force between its two magnetic
terminals and provides it as a signal at the output of the component. A posi-
tive MMF is measured when the magnetic potential at the terminal marked
with a “+” is greater than at the unmarked one. The output signal can be made
accessible in Simulink with an Output block (see page 674) or by dragging the
component into the dialog box of a Probe block.

Note The MMF Meter is ideal, i.e. it has an zero internal permeance. Hence,
if multiple meters are connected in series the MMF across an individual meter
is undefined. This produces a run-time error.

Probe Signal MMF
The measured magneto-motive force in ampere-turns (A).
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MMF Source (Constant)

Purpose Generate a constant magneto-motive force

Library Magnetic / Sources

Description The Constant MMF Source generates a constant magneto-motive force (MMF)
between its two magnetic terminals. The MMF is considered positive at the ter-
minal marked with a “+”.

Note An MMF source may not be short-circuited or connected in parallel to a
permeance or any other MMF source.

Parameter Voltage
The magnitude of the MMF, in ampere-turns (A). The default value is 1.

Probe Signal MMF
The magneto-motive force of the source, in ampere-turns (A).
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MMF Source (Controlled)

Purpose Generate a variable magneto-motive force

Library Magnetic / Sources

Description The Controlled MMF Source generates a variable magneto-motive force (MMF)
between its two terminals. The MMF is considered positive at the terminal
marked with a “+”. The momentary MMF is determined by the signal fed into
the input of the component.

Note An MMF source may not be short-circuited or connected in parallel to a
permeance or any other MMF source.

Parameter Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of magnetic measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Probe Signal MMF
The magneto-motive force of the source, in ampere-turns (A).
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Model Reference

Purpose Reference a subsystem from the same or another model

Library System

Description The Model Reference block allows you to reference a subsystem from the same
or another model. The reference is synchronized when the original subsystem
has changed. This concept is similar to library links with the difference that the
referenced model file path can be specified relative to the referencing model.

The model reference is defined in the Model Reference dialog. Double-click on
the Model Reference block to open the dialog, then drag the subsystem that you
want to reference into it. The labels Model file and Subsystem path will be
updated to reflect the subsystem that is referenced. By default, the referenced
model file is specified with a path relative to the referencing model. You can
change this with the Model file reference selector.

When you click OK to apply the settings, the Model Reference block is replaced
with a copy of the referenced subsystem that is marked with a small solid
curved arrow ( ) in the lower left corner of the component icon. A right-click on
this arrow opens a context menu that allows you to break the link, to edit the
model reference, or to show the original subsystem.

If the referenced subsystem is in the same model, the Model file label shows
the text local reference.

Note

• For technical reasons, you can only reference subsystems in the same model
(local references) or PLECS Standalone models. See “Opening a PLECS
Standalone Model” (on page 49) to learn how to open a PLECS Standalone
model in PLECS Blockset.

• Synchronization is performed when the circuit is loaded, when the reference
is changed in the dialog, or before a simulation. To force an update, choose
Synchronize all external links... from the Edit menu.
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Monoflop

Purpose Generate pulse of specified duration when triggered

Library Control / Logical

Description The output of the Monoflop changes to 1 when the trigger condition is fulfilled.
When the trigger condition is no longer fulfilled, the output stays 1 for the given
duration and changes to 0 afterwards.

Depending on the trigger type the behavior is as follows:

rising
The output is set to 1 for the given duration when the input changes from 0
to a non-zero value.

falling
The output is set to 1 for the given duration when the input changes from a
non-zero value to 0.

level
The output is set to 1 when the input is a non-zero value. It stays 1 for
the given duration after the input returns to 0. With this trigger type, the
Monoflop acts like a Turn-off delay.

The Monoflop can be retriggered, i.e. if the trigger condition is fulfilled again
while the output is 1, the pulse duration is extended.

The pulse duration can be specified statically via a parameter or dynamically
during the simulation via an input signal.

Parameters Trigger type
The trigger type as described above.

Pulse duration source
Specifies whether the duration is determined by the Pulse duration pa-
rameter (internal) or by an external input signal (external).

Pulse duration
The duration for which the output is set to 1, in seconds (s). If set to 0, the
Monoflop is disabled and outputs 0 at all times.

Duration rounding (fixed-step)
If the duration is determined by an external signal and the Monoflop is
used with a fixed-step solver, this parameter specifies how the duration is
rounded to an integer multiple of the fixed step size.
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Probe Signals Input
The input signal.

Output
The output signal.
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MOSFET

Purpose Ideal MOSFET with optional on-resistance

Library Electrical / Power Semiconductors

Description The Metal Oxide Semiconductor Field Effect Transistor is a semiconductor
switch that is controlled via the external gate. It conducts a current from drain
to source (or vice-versa) only if the gate signal is not zero.

Parameters The following parameters may either be scalars or vectors corresponding to the
implicit width of the component:

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the MOSFET. The MOSFET is initially blocking
if the parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on page
131). If no thermal description is given, the losses are calculated based on
the voltage drop von = Ron · i.

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).

Probe Signals MOSFET voltage
The voltage measured between drain and source.
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MOSFET current
The current through the MOSFET flowing from drain to source.

MOSFET gate signal
The gate input signal of the MOSFET.

MOSFET conductivity
Conduction state of the internal switch. The signal outputs 0 when the
MOSFET is blocking, and 1 when it is conducting.

MOSFET junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

MOSFET conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

MOSET switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.

565



15 Component Reference

MOSFET Converter (3ph)

Purpose 3-phase MOSFET converter

Library Electrical / Converters

Description Implements a three-phase two-level MOSFET converter with reverse diodes.
The gate input is a vector of three signals – one per leg. The upper MOSFET,
connected to the positive dc level, is on if the corresponding gate signal is posi-
tive. The lower MOSFET is on if the gate signal is negative. If the gate signal is
zero, both MOSFETs in the leg are switched off.

You can choose between two different converter models:

• The basic MOSFET Converter is modeled using the component MOSFET
with Diode (see page 567). PLECS needs only six internal switches to simu-
late this converter. Only the on-resistances of the MOSFETs can be entered.

• The MOSFET Converter with Parasitics is based on individual MOSFET
(see page 564) and Diode (see page 411) components. In this model you may
specify forward voltages and on-resistances separately for the MOSFETs and
diodes.

Note Due to the switching conditions of the MOSFET with Diode (see page
567), this device cannot be turned off actively while the current is exactly zero.
This may result in unexpected voltage waveforms if the converter is not loaded.

To resolve this problem, either use the MOSFET Converter with Parasitics,
or allow a small non-zero load current to flow by connecting a large load resis-
tance to the converter.

Parameters For a description of the parameters see the documentation of the MOSFET with
Diode (on page 567), the MOSFET (on page 564) and the Diode (on page 411).

Probe Signals The two-level MOSFET converters provide six or twelve probe signals, each a
vector containing the appropriate quantities of the individual devices: voltage,
current, conductivity, conduction loss and switching loss. The vector elements
are ordered top-to-bottom, left-to-right: a+, a-, b+, b-, c+, c-.
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MOSFET with Diode

Purpose Ideal MOSFET with ideal anti-parallel diode

Library Electrical / Power Semiconductors

Description This model of a Metal Oxide Semiconductor Field Effect Transistor has an in-
tegrated anti-parallel diode. The diode is usually included in power MOSFET
packages.

This device is modeled as a single ideal switch that closes when the gate signal
is not zero or the voltage becomes negative and opens when the gate signal is
zero and the current becomes positive.

Note Due to the switching conditions described above, this device cannot be
turned off actively while the current is exactly zero. This may result in unex-
pected voltage waveforms if the device is used e.g. in an unloaded converter.

To resolve this problem, either use an individual MOSFET (see page 564) with
an individual anti-parallel Diode (see page 411), or allow a small non-zero load
current to flow by connecting a large load resistance to the converter.

Parameters Initial conductivity
Initial conduction state of the device. The device is initially blocking if the
parameter evaluates to zero, otherwise it is conducting. This parameter
may either be a scalar or a vector corresponding to the implicit width of the
component. The default value is 0.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapters “Thermal Modeling” (on
page 131) and “Losses of Semiconductor Switch with Diode” (on page 161).

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
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junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).

Probe Signals Device voltage
The voltage measured between drain and source. The device voltage can
never be negative.

Device current
The current through the device. The current is positive if it flows through
the MOSFET from drain to source and negative if it flows through the diode
from source to drain.

Device gate signal
The gate input signal of the device.

Device conductivity
Conduction state of the internal switch. The signal outputs 0 when the de-
vice is blocking, and 1 when it is conducting.

Device junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

Device conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Device switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.
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MOSFET with Limited di/dt

Purpose Dynamic MOSFET model with finite current slopes during turn-on and turn-off

Library Electrical / Power Semiconductors

Description In contrast to the ideal MOSFET model (see page 564) that switches instanta-
neously, this model includes drain current transients during switching. Thanks
to the continuous current decay during turn-off, stray inductances may be con-
nected in series with the device.

This MOSFET model is used to simulate overvoltages produced by parasitic
inductances and the reverse recovery effect of diodes. Due to simplified voltage
and current transient waveforms, the model is not suited for the simulation of
switching losses. The dynamic behavior of this MOSFET model is identical with
the one of the IGBT with limited di/dt (see page 504).

Note

• Due to the small time-constants introduced by the turn-on and turn-off tran-
sients a stiff solver is recommended for this device model.

• If multiple MOSFETs are connected in series, the off-resistance may not be
infinite.

Parameters Blocking voltage
Maximum voltage VDSS in volts (V) that under any conditions should be ap-
plied between drain and source.

Continuous drain current
Maximum dc current ID in amperes (A) that the MOSFET can conduct.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Off-resistance
The resistance Roff of the blocking device, in ohms (Ω). The default is 1e6.
This parameter may be set to inf unless multiple MOSFETs are connected
in series.
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Rise time
Time tr in seconds (s) between instants when the drain current has risen
from 10% to 90% of the continuous drain current ID.

Fall time
Time tf in seconds (s) between instants when the drain current has dropped
from 90% to 10% of its initial value along an extrapolated straight line tan-
gent the maximum rate-of-change of the current.

Stray inductance
Internal inductance Lσ in henries (H) measured between the drain and
source terminals.

Initial current
The initial current through the component at simulation start, in amperes
(A). The default is 0.

Probe Signals MOSFET voltage
The voltage measured between drain and source.

MOSFET current
The current through the MOSFET flowing from drain to source.

MOSFET conductivity
Conduction state of the internal switch. The signal outputs 0 when the
MOSFET is blocking, and 1 when it is conducting.
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Moving Average

Purpose Continuously average input signal over specified time period

Library Control / Filters

Description The Moving Average filter averages a continuous input signal u over the spec-
ified averaging time T . The output y is continuously updated in every simula-
tion step:

y(t) =
1

T

ˆ t

t−T

u(τ)dτ

The implementation of this block avoids accumulating numerical integration
errors typically associated with continuous-time implementations of FIR filters.
However, the Moving Average filter is computationally more expensive and less
accurate than the similar Periodic Average (see page 589).

Parameters Initial Condition
The initial condition describes the input signal before simulation start. If
the input is a scalar signal, the parameter must be a scalar too. If input and
output are vectorized signals, a vector can be used. The number of elements
in the vector must match the number of input signals. The default value of
this parameter is 0.

Averaging time
A scalar specifying the period or a two-element vector specifying the period
and offset of the averaging interval, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).

Probe Signals Input
The input signal.

Output
The filtered output signal.
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Multiport Signal Switch

Purpose Select one of multiple input signals depending on control signal

Library Control / Discontinuous

Description The block output is connected to the block input specified by the scalar value
at the control terminal. If the control terminal signal is not in the range of the
available input terminals, the default input terminal is used.

Parameters Number of inputs
The number of input terminals. It has to be a literal integer value bigger
than 2.

Default input
The default input terminal if the control signal is out of range.

Probe Signals Inputs
The block input signals.

Output
The block output signal.

Switch position
The state of the switch position. This is the control signal or, in case the
control signal is out of range, the default input parameter.

Out of range
A boolean value that is true if the control input is out of range.
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Mutual Inductor

Purpose Ideal mutual inductor

Library Electrical / Passive Components

Description This component provides two or more coupled inductors. Electrically, it is equiv-
alent with a vectorized Inductor (see page 528). In contrast to the vectorized
Inductor, this component displays the individual inductors in the schematic as
separate windings.
In the symbol of the mutual inductor, the positive terminal of winding 1 is
marked with a little circle. The positive terminals of all other windings are
marked with dots.

Note An inductor may not be connected in series with a current source. Doing
so would create a dependency between an input variable (the source current)
and a state variable (the inductor current) in the underlying state-space equa-
tions.

Parameters Number of windings
The number of ideal inductors represented by the component.

Inductance
The inductance in henries (H). All finite positive and negative values are
accepted, including 0.
If the parameter is a scalar or a vector, no coupling exists between the wind-
ings. In order to model a magnetic coupling between the windings a square
matrix must be entered. The size n of the matrix corresponds to the number
of windings. Li is the self inductance of the internal inductor and Mi,j the
mutual inductance:

v1

v2
...

vn

 =


L1 M1,2 · · · M1,n

M2,1 L2 · · · M2,n

...
...

. . .
...

Mn,1 Mn,2 · · · Ln

 ·



d
dt i1

d
dt i2

...
d
dt in


The inductance matrix must be invertible, i.e. it may not be singular. A sin-
gular inductance matrix results for example when two or more inductors
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are ideally coupled. To model this, use an inductor in parallel with an Ideal
Transformer (see page 480).

The relationship between the coupling factor ki,j and the mutual inductance
Mi,j is

Mi,j = Mj,i = ki,j ·
√
Li · Lj

Initial current
The initial current in the windings at simulation start, in amperes (A). This
parameter may either be a scalar or a vector corresponding to the number of
windings. The direction of the initial current inside the component is from
the positive to the negative terminal. The default of the initial current is 0.

Probe Signals Winding i current
The current flowing through winding i, in amperes (A).

Winding i voltage
The voltage measured across winding i, in volts (V).
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Mutual Inductance (2 Windings)

Purpose Magnetic coupling between two lossy windings

Library Electrical / Transformers

Description This component implements a magnetic coupling between two separate wind-
ings. For both windings the self inductance and resistance are specified individ-
ually. The mutual inductance and resistance are modeled as linear elements.
The electrical circuit for this component is given below:

1:1

i2i1

Rm

Lm

L1−Lm R1−Rm L2−Lm R2−Rm

In the symbol of the mutual inductance, the positive terminal of the primary
winding is marked with a little circle. The positive terminal of the secondary
winding is marked with a dot.

Parameters Self inductance
A two-element vector containing the self inductance for the primary wind-
ing L1 and the secondary winding L2. The inductivity is given in henries
(H).

Winding resistance
A two-element vector containing the self resistance of the primary winding
R1 and the secondary winding R2, in ohms (Ω).

Mutual inductance
The mutual inductance Lm, in henries (H).

Mutual resistance
The mutual resistance Rm, in ohms (Ω).

Initial current
A two-element vector containing the initial currents on the primary side i1
and the secondary side i2, in amperes (A). The direction of the initial cur-
rent inside the component is from the positive to the negative terminal. The
default value is [0 0].
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Probe Signals Winding i current
The current flowing through winding i, in amperes (A).

Winding i voltage
The voltage measured across winding i, in volts (V).
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Mutual Inductance (3 Windings)

Purpose Magnetic coupling between three lossy windings

Library Electrical / Transformers

Description This component implements a magnetic coupling between three separate wind-
ings. For all windings the self inductance and resistance are specified individu-
ally. The mutual inductance and resistance are modeled as linear elements.

The electrical circuit for this component is given below:

R3−Rm

i1

Rm

Lm

L1−Lm R1−Rm

1:1 :1

i3L3−Lm

i2L2−Lm R2−Rm

In the symbol of the mutual inductance, the positive terminal of the primary
winding is marked with a little circle. The positive terminals of the secondary
and tertiary windings are marked with dots.

Parameters Self inductance
A three-element vector containing the self inductance for the primary wind-
ing L1, the secondary winding L2 and the tertiary winding L3. The inductiv-
ity is given in henries (H).

Winding resistance
A three-element vector containing the self resistance of the primary wind-
ing R1, the secondary winding R2 and the tertiary winding R3, in ohms (Ω).

Mutual inductance
The mutual inductance Lm, in henries (H).

Mutual resistance
The mutual resistance Rm, in ohms (Ω).
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Initial current
A three-element vector containing the initial currents on the primary side
i1, the secondary side i2 and the tertiary side i3, in amperes (A). The direc-
tion of the initial current inside the component is from the positive to the
negative terminal. The default value is [0 0 0].

Probe Signals Winding i current
The current flowing through winding i, in amperes (A).

Winding i voltage
The voltage measured across winding i, in volts (V).
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Non-Excited Synchronous Machine

Purpose Non-excited synchronous machine configurable with lookup tables

Library Electrical / Machines

Description This three-phase synchronous machine has a solid rotor with optional perma-
nent magnets. Magnetization, saliency, saturation and cross-coupling are mod-
eled by means of corresponding flux linkage and incremental inductance lookup
tables.

The machine can operate as either a motor or generator. If the mechanical
torque has the same sign as the rotational speed, the machine is operating in
motor mode; otherwise it is in generator mode. In the component icon, phase a
is marked with a dot.

In order to inspect the implementation, please select the component in your cir-
cuit and choose Look under mask from the Subsystem submenu of the Edit
menu. If you want to make changes, you must first choose Break library link
both from the same menu.

Electrical System

The model is realized by means of the voltage behind reactance (VBR) formu-
lation and is therefore appropriate to simulate switching dead-time and failure
modes.

Electrical equation expressed in synchronous frame by means of space-vector
notation:

−→vs = Rs ·
−→
is + (Lσs + Lmi) · (

d
−→
is
dt

+ j · ω · −→is ) +−→es

−→es = j · ω · −→φm − Lmi · j · ω · −→is
with

−→x =

 xd

xq


where j · −→x rotates the synchronous frame vector, −→x , clockwise by 90◦.

These equations are transformed back into the stationary frame to control the
VBR network. The zero-sequence impedance of the machine is set to Lss.
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The VBR network implementation uses the Variable Inductor (see page 806) to
model the time-varying characteristic of the machine inductance. PLECS does
not support code generation for the Variable Inductor component. When gener-
ating code for the VBR model the machine equations are reformulated to inter-
face electrically with a constant inductance and emulate the variable portion of
the inductance with a voltage source.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (φd iq − φq id)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

θ̇m = ωm

Parameters

General

Stator resistance
Armature or stator resistance Rs in Ω.

Stator leakage inductance
Leakage inductance of stator windings in henries (H). Stator leakage must
be set to a non-zero value.

Number of pole pairs
Number of pole pairs p.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A). ic,0 is calculated assuming a neutral connec-
tion.
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Magnetizing Inductance

Id lookup vector
d-axis current vector serving as input values to flux linkage and incremen-
tal inductance lookup tables. Must be a vector with 2 or more elements, and
monotonically increasing, i.e. [0 . . . id,max]. The values are in amperes (A).

Iq lookup vector
q-axis current vector serving as input values to flux linkage and incremen-
tal inductance lookup tables. Must be a vector with 2 or more elements, and
monotonically increasing, i.e. [0 . . . iq,max]. The values are in amperes (A).

Psid (Id, Iq) lookup table
d-axis flux linkage lookup table (2D). The number of rows and columns
must match the size of the d- and q-axis currents, respectively. The values
are in volt-seconds (Vs).

Psiq (Id, Iq) lookup table
q-axis flux linkage lookup table (2D). The number of rows and columns
must match the size of the d- and q-axis currents, respectively. The values
are in volt-seconds (Vs).

Lmidd (Id, Iq) lookup table
d-axis self incremental inductance lookup table (2D). The number of rows
and columns must match the size of the d- and q-axis currents, respectively.
If Lmi data is not specified or set to [], the incremental inductance is calcu-
lated from the flux linkage data. The values are in henries (H).

Lmiqq (Id, Iq) lookup table
q-axis self incremental inductance lookup table (2D). The number of rows
and columns must match the size of the d- and q-axis currents, respectively.
If Lmi data is not specified or set to [], the incremental inductance is calcu-
lated from the flux linkage data. The values are in henries (H).

Lmidq (Id, Iq) lookup table
Mutual incremental inductance lookup table (2D). The number of rows and
columns must match the size of the d- and q-axis currents, respectively. If
Lmi data is not specified or set to [], the incremental inductance is calcu-
lated from the flux linkage data. The values are in henries (H).

Generated table size [d, q]
User-specified dimension to generate derived current vectors and corre-
sponding flux linkage and incremental inductance lookup tables.

If left empty, the supplied data is used as-is. If specified, the dimensions of
the rows and columns must be 2 or more.
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Specifying a scalar value, n, will generate equally spaced, n-element d- and
q-axis current vectors. The corresponding 2D lookup tables for flux linkage
and incremental inductance are also generated.

Specifying a vector, [m,n], will generate equally spaced d- and q-axis current
vectors. The d-axis current vector will have m elements and the q-axis cur-
rent vector will have n elements. The corresponding 2D lookup tables for
flux linkage and incremental inductance are also generated.

The size of the generated tables affect the model initialization and simu-
lation speeds. A smaller size leads to faster model initialization and sim-
ulation speeds, but lower resolution in the generated tables. A larger size
increases the resolution but adversely affects the model initialization and
simulation speeds. Care must be taken when configuring this parameter.

Current out of range
Configure to ignore, warn, warn and pause simulation, or generate error
and stop simulation if the d-axis or q-axis currents are outside the specified
range.

Mechanical

Inertia
Combined rotor and load inertia J in (Nms2).

Friction coefficient
Viscous friction F in (Nms).

Initial rotor speed
Initial mechanical rotor speed ωm,0 in radians per second

(
rad
s

)
.

Initial rotor position
Initial mechanical rotor angle θm,0 in radians.

Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in amperes (A). Cur-
rents flowing into the machine are considered positive.

Stator flux (dq)
The stator flux linkages φd and φq in the rotating reference frame.

Rotational speed
The rotational speed ωm of the rotor in radians per second

(
rad
s

)
.

Rotor position
The mechanical rotor angle θm in radians.
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Electrical torque
The electrical torque Te of the machine in (Nm).

References
H. Bühler, “Réglage de systèmes d’électronique de puissance, vol 1: Théorie”,

Presses Polytechniques et universitaires romandes, Lausanne, 1997.

H. Bühler, “Réglage de systèmes d’électronique de puissance, vol 2: Entraîne-
ments réglés”, Presses Polytechniques et universitaires romandes, Lau-
sanne, 1997.
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Offset

Purpose Add constant offset to input signal

Library Control / Math

Description The Offset block adds a constant to the input signal.

Parameter Offset
The offset to add to the input signal. This value may be negative to subtract
an offset from the signal.

Output data type
The data type of the output signal. See “Data Types” (on page 43). If you
choose inherited, the minimum data type is int8_t.

Data type overflow handling
Specifies how a data type overflow is handled. See “Data Types” (on page
43). This parameter only appears if Output data type is not set to a
floating-point data type.

Probe Signals Input
The input signal.

Output
The output signal.
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Op-Amp

Purpose Ideal operational amplifier with finite gain

Library Electrical / Electronics

Description

+

-

This Op-Amp amplifies a voltage between the non-inverting “+” and invert-
ing “–” input with a specified gain. The resulting voltage is applied between
the output and ground terminal. Output and ground are electrically isolated
from the inputs. If you want to build a linear amplifier, the output voltage must
somehow be fed back to the inverting input.

Parameter Open-loop gain
The voltage gain of the Op-Amp. The default is 1e6.
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Op-Amp with Limited Output

Purpose Ideal operational amplifier with limited output voltage

Library Electrical / Electronics

Description

+

-

This component amplifies a voltage between the non-inverting “+” and invert-
ing “–” input with a specified gain, taking into account the specified output volt-
age limits. The resulting voltage is applied between the output and ground ter-
minal. Output and ground are electrically isolated from the inputs. If you want
to build a linear amplifier, the output voltage must somehow be fed back to the
inverting input.

Parameters Open-loop gain
The voltage gain of the amplifier if operating in linear mode, in volts (V).
The default is 1e6.

Output voltage limits
A two-element vector containing the minimum and maximum output volt-
age Vmin and Vmax in volts (V). The default is [-10 10].
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Pause / Stop

Purpose Pauses or stops the simulation when the input becomes non-zero

Library System

Description This block pauses or stops the simulation when the input signal changes from
zero to a non-zero value.

Note In PLECS Standalone, pause blocks are ignored during analyses and
simulation scripts.

Parameter Action
Use pause or stop to specify whether the block should pause or stop the
simulation. To disable the block, use ignore.
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Peak Current Controller

Purpose Implement peak current mode control

Library Control / Modulators

Description This block implements current mode control in a switching converter. At the be-
ginning of each switching cycle, the output is set. When the Isense input exceeds
the Iref input, the output is reset.

Parameters Switching frequency
The switching frequency of the output signal.

Minimum duty cycle
This sets the minimum time the output remains on for at the beginning of
each switching period. This value must be non-negative and less than the
maximum duty cycle.

Maximum duty cycle
This defines the maximum permissible duty cycle of the switch output. If
Isense < Iref , the output will turn off if the duty cycle exceeds this maximum
value. The maximum duty cycle must be less than 100%.

Slope compensation
Slope compensation can be applied to ensure stability when the output duty
cycle exceeds 50%. Entering a parameter, Islope, reduces Iref during each
switching cycle as follows: I ′ref = Iref − Islope · t/Ts, where t is the time elapsed
from the start of the switching cycle and Ts is the switching period. Slope
compensation can be omitted by setting Islope to 0.
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Periodic Average

Purpose Periodically average input signal over specified time

Library Control / Filters

Description This block periodically averages a continuous input signal u over the specified
averaging time T . The output y is updated at the end of each averaging period.
Mathematically, this block corresponds to a moving average filter where the
output is processed by a zero-order hold:

y(t) =
1

T

ˆ t

t−T

u(τ) dτ · rect
(
t− nT − T/2

T

)
where, n is the sample window index.

However, the implementation of Periodic Average filter is computationally less
expensive and more accurate than the continuous Moving Average (see page
571) filter.

The block is suited to determine average conduction losses of power semicon-
ductors. To determine average switching losses, use the Periodic Impulse Aver-
age (see page 590).

Parameter Averaging time
A scalar specifying the period or a two-element vector specifying the period
and offset of the averaging interval, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).

Probe Signals Input
The input signal.

Output
The filtered output signal.
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Periodic Impulse Average

Purpose Periodically average Dirac impulses over specified time

Library Control / Filters

Description This block periodically averages an input signal u consisting of a series of Dirac
impulses δ. The output y is updated at the end of each averaging period T .
Mathematically, this block corresponds to a moving average filter where the
output is processed by a zero-order hold:

y(t) =
1

T

ˆ t

t−T

u(τ) dτ · rect
(
t− nT − T/2

T

)
where n is the index of the averaging window. If the input signal u consists of
switching loss pulses and the averaging window T equals to the switching pe-
riod, the formula reduces to:

y(t) = EON(n) + EOFF(n)

The block is suited to determine average switching losses of power semicon-
ductors. To determine average conduction losses, use the Periodic Average (see
page 589).

Parameter Averaging time
A scalar specifying the period or a two-element vector specifying the period
and offset of the averaging interval, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).

Probe Signals Input
The input signal.

Output
The filtered output signal.
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Permanent Magnet Synchronous Machine

Purpose Synchronous machine excited by permanent magnets

Library Electrical / Machines

Description This three-phase permanent magnet synchronous machine has a sinusoidal
back EMF.

The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed, the machine is operating in motor mode, oth-
erwise in generator mode. All electrical variables and parameters are viewed
from the stator side. In the component icon, phase a is marked with a dot.

Electrical System

Ld

Rs
p∙ωm∙ φqid

vd

+

−

d-axis

Lq

Rs
p∙ωm∙ φd

vq

+

−

iq

q-axis

Stator flux linkages:

φq = Lq iq

φd = Ld id + φ′
m

591



15 Component Reference

The machine model offers two different implementations of the electrical sys-
tem: a traditional rotor reference frame and a voltage behind reactance (VBR)
formulation.

Rotor Reference Frame Using Park’s transformation, the 3-phase circuit
equations in physical variables are transformed to the dq rotor reference frame.
This results in constant coefficients in the differential equations making the
model numerically efficient. However, interfacing the dq model with the exter-
nal 3-phase network may be difficult. Since the coordinate transformations are
based on voltage-controlled current sources, inductors and naturally commu-
tated devices such as diode rectifiers may not be directly connected to the stator
terminals.

Voltage Behind Reactance This formulation allows for direct interfacing of
arbitrary external networks with the 3-phase stator terminals. The electrical
system is described in circuit form. Due to the resulting time-varying induc-
tance matrices, this implementation is numerically less efficient than the tradi-
tional rotor reference frame.

PLECS does not support code generation for models with time-varying induc-
tance matrices. When generating code for the VBR model the machine equa-
tions are reformulated to interface electrically with a constant inductance and
emulate the variable portion of the inductance with a voltage source.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (φd iq − φq id)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

θ̇m = ωm

Parameters Model
Implementation in the rotor reference frame or as a voltage behind reac-
tance.
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Permanent Magnet Synchronous Machine

Stator resistance
Armature or stator resistance Rs in Ω.

Stator inductance
A two-element vector containing the combined stator leakage and magnetiz-
ing inductance. Ld is referred to the d-axis and Lq to the q-axis of the rotor.
The values are in henries (H).

Flux induced by magnets
Constant flux linkage φ′

m in (Vs) induced by the magnets in the stator wind-
ings.

Inertia
Combined rotor and load inertia J in (Nms2).

Friction coefficient
Viscous friction F in (Nms).

Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical rotor speed ωm,0 in radians per second

(
rad
s

)
.

Initial rotor position
Initial mechanical rotor angle θm,0 in radians.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A).

Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in amperes (A). Cur-
rents flowing into the machine are considered positive.

Stator flux (dq)
The stator flux linkages φd and φq in the rotating reference frame in (Vs):

φq = Lq iq

φd = Ld id + φ′
m

Rotational speed
The rotational speed ωm of the rotor in radians per second

(
rad
s

)
.

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in (Nm).
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See also If the stator inductance is independent of the rotor angle, i.e. Ld = Lq, it is com-
putational more efficient to use the simplified Brushless DC Machine (see page
377) with a sinusoidal back EMF. The parameters need to be converted as fol-
lows:

L−M = Ld = Lq

KE = φ′
m · p

For back EMF shapes other than sinusoidal, and/or if the stator inductance has
a complex angle dependency, please use the sophisticated model of the Brush-
less DC Machine (see page 374). The sophisticated BLDC machine can be con-
figured as a PMSM with sinusoidal back EMF if the parameters are converted
as follows:

Kc,n = [0]

Ks,n = [−φ′
m · p]

L0−M =
Ld + Lq

2

Lc,n = [0 Ld−Lq]

Ls,n = [0 0]
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Permanent Magnet Synchronous Machine (Open Winding)

Purpose Synchronous machine excited by permanent magnets with open stator wind-
ings.

Library Electrical / Machines

Description This three-phase permanent magnet synchronous machine has a sinusoidal
back EMF.

The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed, the machine is operating in motor mode, oth-
erwise in generator mode. All electrical variables and parameters are viewed
from the stator side. In the component icon, positive terminal of phase a is
marked with a dot.

Electrical System

Stator flux linkages:

φq = Lq iq

φd = Ld id + φ′
m

φ0 = Lls i0

The stator inductance parameters Ld, Lq, and Lls are related as follows:

Ld = Lmd + Lls

Lq = Lmq + Lls

With Lmd and Lmq representing the magnetizing inductances and Lls the stator
leakage inductance.

The machine model offers two different implementations of the electrical sys-
tem: a traditional rotor reference frame and a voltage behind reactance (VBR)
formulation.
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Ld

Rs
p∙ωm∙ φqid

vd

+

−

d-axis

Lq

Rs
p∙ωm∙ φd

vq

+

−

iq

q-axis

Lls

Rsi0

v0

+

−

0-axis

Rotor Reference Frame Using Park’s transformation, the 3-phase circuit
equations in physical variables are transformed to the dq0 rotor reference
frame. This results in constant coefficients in the differential equations mak-
ing the model numerically efficient. However, interfacing the dq0 model with
the external 3-phase network may be difficult. Since the coordinate transforma-
tions are based on voltage-controlled current sources, inductors and naturally
commutated devices such as diode rectifiers may not be directly connected to
the stator terminals.
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Permanent Magnet Synchronous Machine (Open Winding)

Note In the rotor reference frame implementation the voltage across each
open ended stator winding is an input to the machine equations. The two elec-
trical connections for each phase cannot be galvanically isolated, otherwise the
phase voltage measurement is undefined. Therefore the rotor reference frame
model does not support a floating star (y) connection.

Voltage Behind Reactance This formulation allows for direct interfacing of
arbitrary external networks with the 3-phase stator terminals. The electrical
system is described in circuit form. Due to the resulting time-varying induc-
tance matrices, this implementation is numerically less efficient than the tradi-
tional rotor reference frame.

PLECS does not support code generation for models with time-varying induc-
tance matrices. When generating code for the VBR model the machine equa-
tions are reformulated to interface electrically with a constant inductance and
emulate the variable portion of the inductance with a voltage source.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (φd iq − φq id)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

θ̇m = ωm

Parameters Most parameters for the Permanent Magnet Synchronous Machine (see page
591) are also applicable for this machine. Only the following parameters differ:

Stator leakage inductance
Leakage inductance of stator windings in henries (H). Stator leakage must
be set to a non-zero value.
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Initial stator currents
A three-element vector containing the initial stator currents ia,0, ib,0 and ic,0
of phase a, b and c in amperes (A).

Probe Signals Most probe signals for the Permanent Magnet Synchronous Machine (see page
591) are also available with this machine. Only the following probe signal is
different:

Stator flux (dq0)
The stator flux linkages φd, φq, and φ0 in the rotating reference frame in
(Vs).
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Phase-Shifted Full-Bridge Converter

Purpose Phase-Shifted Full-Bridge converter module

Library Electrical / Power Modules

Description

1

1

1

1

1

1

1

1 n:1�1

L

Lf

Switched All power semiconductors inside the module are modeled with ideal
switches. The individual IGBTs are controlled with logical gate signals. An
IGBT is on if the corresponding gate signal is not zero. For compatibility with
the sub-steps event configuration it is recommended to use the value 1 for non-
zero gate signals.

Sub-step events The module is implemented with controlled current sources,
on both primary and secondary terminals, instead of ideal switches. Both sides
of the converter have current source behavior and must be connected to posi-
tively biased capacitors or voltage sources.

The control signals are the relative on-times of the IGBTs with values between
0 and 1. They can be seen as the duty cycles of the individual IGBTs during the
simulation step. They are computed by periodically averaging the digital gate
signals over a fixed period of time.

Since the inductors current are simulated accurately, even with relatively large
time steps, the sub-steps configuration is particularly well suited for real-time
simulations with high switching frequencies. However, it is not recommended
to use discretisation step sizes (sample time parameter) larger than one fifth of
the switching period.

This type of implementation is an extension of the classical “sub-cycle average"
implementation, used in the PLECS power modules, which yields more accu-
rate simulation results than a purely switched configuration. The accuracy im-
provement is obtained by performing sub-step calculations within one simula-
tion step, which results in the calculation of as many inductor current values as

599



15 Component Reference

switching combinations encountered during one simulation step. This approach
allows for a more accurate calculation of the average inductor current. Never-
theless, if the output capacitor voltage changes rapidly between two simulation
steps, the accuracy of the calculations given by the power module will degrade.
Therefore, in order to maintain high accuracy in the simulated results, the us-
age of low values of output filter capacitance is not recommended.

Note The sub-steps event implementation cannot model a shoot-through or
clamping of the DC side. Therefore, the sums of the control signals for the up-
per and lower IGBTs in the same leg must not exceed 1 at any time. Also, the
applied DC voltages must never become negative.

Parameters Configuration
Allows you to chose between Switched or Sub-step events configuration.

Semiconductor symbol
This setting lets you choose between IGBT and MOSFET for the symbol the
active semiconductor switches. This setting does not change the electrical
behavior of the power module in simulation.

Output rectifier
This setting lets you choose between Half bridge and Full bridge output
rectifier topology.

Stray inductance
A non-zero scalar specifying the primary side stray inductance of the trans-
former, in henries (H).

Winding resistance
A scalar specifying the resistance of the primary winding RL, in ohms (Ω).

Turns ratio
A scalar specifying the primary side turns by secondary side turns ratio.

Filter inductance
A non-zero scalar specifying the output filter inductance of the, in henries
(H).

Sample time
A scalar specifying the sampling period or a two-element vector specifying
the sampling period and offset, in seconds (s). If the Configuration is set
to Sub-step events, this parameter requires a non-zero sampling period.
See also section “Sample Times” (on page 38).
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Assertions
When set to on, the block will flag an error if the sums of the control signals
for any of the four half-bridges exceed 1.
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Pi-Section Line

Purpose Single-phase pi-section transmission line

Library Electrical / Passive Components

Description The Pi-Section Line implements a single-phase transmission line with parame-
ters lumped in pi sections.

A transmission line is characterized by a uniform distribution of inductance, re-
sistance, capacitance and conductance along the line. However, in many cases
these distributed parameters can be approximated by cascading multiple pi
sections with discrete components. The figure below illustrates the electrical
circuit used for the line model.

R

C

2

G

2
C

C

2
GGC

G

2

L R L R L

Let l be the length of the line and n the number of pi sections representing the
line. The inductance L, the resistance R, the capacitance C and the conduc-
tance G of the discrete elements can then be calculated from their per-unit-
length counterparts L′, R′, C ′ and G′ using the following equations:

L =
l

n
L′, R =

l

n
R′, C =

l

n
C ′, G =

l

n
G′

Parameters Inductance per unit length
The series line inductance L′ per unit length. If the length l is specified in
meters (m), the unit of L′ is henries per meter (H/m).

Resistance per unit length
The series line resistance R′ per unit length. If the length l is specified in
meters (m), the unit of R′ is ohms per meter (Ω/m).

Capacitance per unit length
The capacitance C ′ between the line conductors per unit length. If the
length l is specified in meters (m), the unit of C ′ is farads per meter (F/m).
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Conductance per unit length
The conductance G′ between the line conductors per unit length. If the
length l is specified in meters (m), the unit of G′ is siemens per meter (S/m).

Length
The length l of the line. The unit of l must match the units L′, R′, C ′ and G′

are based on.

Number of pi sections
Number of sections used to model the transmission line. The default is 3.

Initial voltage
A scalar value specifying the initial voltage of all capacitors at simulation
start, in volts (V).
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Piece-wise Linear Resistor

Purpose Resistance defined by voltage-current pairs

Library Electrical / Passive Components

Description This component models a piece-wise linear resistor. The resistance characteris-
tic is defined by a set of voltage-current values.

u

i

U
1

U
3

U
4

I
1

I
3

I
4

The operating mode of the piece-wise linear resistor is illustrated in the dia-
gram below. The voltage across the device dictates which internal switch is
closed. The values 0V / 0A must always be defined in the set of voltage / cur-
rent values to ensure the current is zero at zero voltage.
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Piece-wise Linear Resistor

Note In order to model a saturation characteristic with n segments, this com-
ponent requires n ideal switches. It is therefore advisable to keep the number of
segments low in order to maintain a high simulation speed.

Parameters Voltage values
A vector of voltage values U in volts (V) that defines the piece-wise linear
characteristic. The voltage values must be strictly monotonic increasing. At
least two values are required. The value 0 must be present, the correspond-
ing current value must also be 0.

Current values
A vector of current values I in amperes (A) that defines the piece-wise lin-
ear characteristic. The current values must be strictly monotonic increas-
ing. The number of current values must match the number of voltage val-
ues. The value 0 must be present, the corresponding voltage value must
also be 0.

Probe Signals Resistor voltage drop
The voltage measured across the component, in volts (V). The positive ter-
minal of the resistor is marked with a small black dot.

Resistor current
The current flowing through the component, in amperes (A).

Resistor power
The power consumed by the resistor, in watts (W).
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Planetary Gear Set

Purpose Ideal planetary gear set

Library Mechanical / Rotational / Components

Description This component models a planetary gear set with a sun gear, planet gears con-
nected via a carrier, and a ring gear. The component is divided into two sub-
components: a ring-planet gear subsystem and a sun-planet gear subsystem, as
shown in the figure below.

The planetary gear set has three external shafts: ring gear shaft (R), sun gear
shaft (S), and carrier shaft (C). The relation between the angular speeds of the
gears and carrier are described by the following equations:

Nsωs +Npωp − (Ns +Np)ωc = 0

Nrωr −Npωp − (Nr −Np)ωc = 0

where Nr, Ns, and Np correspond to the number of teeth on the ring, sun, and
each planet gear respectively, and ωr, ωs, ωp, and ωc correspond to the angular
speed of the ring gear, sun gear, planet gears, and carrier respectively.

These equations can further be simplified to

Nsωs +Nrωr = (Ns +Nr)ωc

The model includes an internal lumped moment of inertia representing the
planet gears (which is set to zero by default). The moments of inertia of the
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ring and sun gears and the carrier can be modeled by connecting an Inertia (see
page 530) to the corresponding shaft.

Parameters
Main

Number of sun teeth
Number of teeth on the sun gear.

Number of planet teeth
Number of teeth on each planet gear.

Number of ring teeth
Number of teeth on the ring gear.

Planet gear

Moment of inertia of planet gear
Combined planet gear inertia J in (Nms2).

Initial speed of planet gear
Initial angular speed of each planet gear ωp in

(
rad
s

)
.

Probe Signals Sun gear speed
Angular speed of sun gear ωs in

(
rad
s

)
.

Planet gear speed
Angular speed of each planet gear ωp in

(
rad
s

)
.

Carrier
Angular speed of carrier ωc in

(
rad
s

)
.

Ring gear speed
Angular speed of ring gear ωr in

(
rad
s

)
.
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Polar to Rectangular

Purpose Convert polar coordinates to Cartesian coordinates

Library Control / Transformations

Description This block transforms a signal representing polar coordinates [r, θ] into rectan-
gular coordinates [x, y]:

x = r ∗ cos(θ)
y = r ∗ sin(θ)

where θ is in radians.
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PLL (Single-Phase)

Purpose Implementation of a single phase PLL

Library Control / Continuous

Description This block implements two different types of a single-phase Phase Locked Loop
(PLL). The single-phase PLL component provides at its output terminals an
estimation of the input signal frequency, signal amplitude and the phase-angle.

PLL Types

Three fundamental blocks can be identified in a basic single-phase PLL struc-
ture.

• Phase detector: Generates an output signal that is proportional to the phase
difference between the input signal and the signal generated by the PLL it-
self.

• Controller: Usually a PI controller to attenuate high-frequency components
and to eliminate the steady-state phase-error.

• Frequency/phase-angle generator: Generates a phase-angle signal based
on the estimated angular frequency. Typically, this block is constituted by a
wrapping integrator.

*
* e uPI(s) ++

w0

wrapping
integrator

thetaw cos
v v'

Phase	detector Controller Frequency/phase-angle
detector

Basic structure of a single-phase PLL

Two different types of a single-phase PLL are implemented. The main dif-
ference between the two methods is how the phase detector works. Please
note that both PLL implementations use an amplitude normalization scheme.
Therefore, information about the nominal input signal amplitude is not needed.
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Enhanced PLL

The performance of the basic PLL implementation is enhanced by filtering the
input signal with an adaptive notch filter (ANF). When the input signal has the
same phase-angle and frequency as the estimation of the PLL itself, the output
of the ANF becomes zero. Due to this, oscillations at the output of the phase
detector are canceled out and the signal phase-angle is accurately estimated by
the basic PLL structure.

v v'
+−

-cos(theta')

*
*k

ANF	gain

1/s*
*

Enhanced structure with adaptive notch filter

SOGI

V
Vab

+− k +− *
* 1/s

*
*1/s

omega

General structure of the SOGI adaptive filter

This implementation uses an ortogonal signal generator based on second or-
der generalized integrator (SOGI). Based on the input signal, two sine waves
with a phase shift of 90◦ are generated. The first of the two components has the
same phase and magnitude as the fundamental of the input signal. From the
structure given in above figure the following relevant transfer functions of the
structure can be derived:

Vα(s)

V (s)
=

kω′s

s2 + kω′s+ ω′2

Vβ(s)

V (s)
=

kω
′2

s2 + kω′s+ ω′2
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To avoid problems due to input signal frequency fluctuations the resonance fre-
quency ω′ is provided by the estimated frequency of the PLL structure. The
filtering effort can be adjusted with the filter gain k. If k decreases, the band-
pass filter will become narrower resulting in heavier filtering, but resulting in
a slower system response. Especially when working under distorted grid condi-
tions reducing the filter gain k may be beneficial.

Parameters
Basic

PLL type
Specifies the PLL type. The single-phase PLL can be of type Enhanced PLL
or SOGI. For further explanations on the different PLL implementations see
PLL types above.

Nominal frequency
The nominal frequency of the fundamental component in hertz or radi-
ans/second, see below.

Nominal input voltage
The estimated nominal peak voltage of the input signal in volts (V). This
value is needed to correctly initialize all states in the PLL structure. If this
information is not known, this parameter can be set to zero.

Initial phase-angle
The initial phase-angle of the input signal in rad, per unit (p.u.) or degrees,
see below. The parameter value should be in the range [0, 2π], [0, 1] or [0, 360]
respectively.

Sin/Cos output
Activates an additional signal output terminal (on) with an unitary signal
synchronous with the input signal. In addition also a 90 degree delayed sig-
nal is provided. If the parameter is set to off, the signal terminal is hidden.

Units for frequency and phase
The frequency and phase can be expressed in terms of (rad/s, rad), (Hz,
p.u.) or (Hz, degrees). If the phase is expressed in per unit (p.u.), a value
of 1 is equivalent to the period length of the nominal frequency. This param-
eter also changes the unit of the frequency output of the PLL component.

Controller design

Controller design
Specifies the controller design approach. If the parameter is set to Basic,
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the PI controller gains are automatically set to have a settling time of ap-
proximately 0.06 seconds. By using the Advanced approach, the user can
specify the controller gains Kp and Ki and the filter gain k freely. Please
note, that it is not required to scale the controller gains by the rated input
signal amplitude since the input signal is normalized.

Proportional gain Kp
The proportional gain of the PI controller. This parameter is shown only if
the Controller design parameter is set to Advanced.

Integral gain Ki
The integral gain of the PI controller. This parameter is shown only if the
Controller design parameter is set to Advanced.

ANF gain k
Changes the filter bandwidth of the adaptive notch filter in the enhanced
PLL structure. This parameter is shown only if the Controller design pa-
rameter is set to Advanced and the PLL type parameter to Enhanced PLL.

SOGI filter gain k
Changes the filter bandwidth of the SOGI structure. Reducing k leads to a
narrower bandpass-filter. This parameter is shown only if the Controller
design parameter is set to Advanced and the PLL type parameter to SOGI.

Probe Signals Theta
The estimated phase-angle of the input signal.

Amplitude
The estimated amplitude of the input signal.

Frequency
The estimated frequency of the input signal.

Sin/Cos
A unitary fundamental signal running synchronous with the input signal
and a 90 degree delayed signal of it.

Input Signal
The input signal of the PLL block.

References
R. Teodorescu, et. al., “Grid Converters for Photovoltaic and Wind Power Sys-

tems”, John Wiley & Sons Ltd., 2011.
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PLL (Three-Phase)

Purpose Implementation of a three-phase PLL

Library Control / Continuous

Description This block implements two different types of a three-phase Phase Locked Loop
(PLL). The PLL block provides an estimation of the phase-angle, amplitude and
frequency of the three-phase input signal.

PLL Types

General PLL Structure

The general PLL structure shown of a three-phase PLL can be divided into
three basic blocks:

• Phase detector: Generates an output signal that is proportional to the phase
difference between the input signal and the signal generated by the PLL it-
self.

• Controller: Usually a PI controller to attenuate high-frequency components
and to eliminate the steady-state phase-error.

• Frequency/phase-angle generator: Generates a phase-angle signal based
on the estimated angular frequency. Typically, this block is constituted by a
wrapping integrator.

Vabc
theta

Phase
detector

wrapping
integrator

phiw++

w0

Continuous	PID
Controller

e uPI(s)

General PLL block diagram

The main difference between the two offered three-phase PLLs lies in the phase
detector part.
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SRF-PLL

A basic synchronization technique in three-phase applications is the syn-
chronously rotating reference frame PLL (SRF-PLL). The three-phase voltage
vector in the natural reference frame is transformed in the rotating reference
frame by using the Park transformation. The instantaneous phase angle is
controlled by a feedback loop that regulates the q component to zero. Under
steady-state operation, i.e. when the q component is zero, the d component de-
picts the amplitude of the input voltage vector. This simple approach works fine
if the grid voltage is not affected by harmonics or unbalances. To avoid the im-
pact of voltage harmonics on the accuracy of the estimated phase-angle and fre-
quency, the controller bandwidth has to be set as high as possible. However,
under unbalanced grid conditions, a double-frequency ripple of the input signal
frequency is visible on the output signals of the PLL if the control-loop band-
width is set to high. Therefore, a trade-off between those two control goals has
to be made.

Vabc

theta'

Vdq3ph->SRF

abc
αβ

SRF->RRF

αβ
dq

Phase detector of the SRF-PLL

DSRF-PLL

The decoupled double synchronous reference frame PLL uses two synchronous
reference frames, rotating with positive and negative synchronous speeds, re-
spectively. This allows the decoupling of the effect of the negative sequence
component on the dq-signals. This is of high interest when synchronizing to
non-ideal grids, i.e unbalanced voltage conditions. Since the double-frequency
ripple caused by the unbalanced grid condition is avoided, a higher control
bandwidth compared to the SRF-PLL can be set. The transfer function of the
low-pass filter in above scheme can be written as:

Vout(s)

Vin(s)
=

kω0

s+ kω0

By decreasing the filter gain k, the bandwidth of the LPF can be reduced ac-
cordingly.

Parameters
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PLL (Three-Phase)

Vabc theta'

Vdq

3ph->SRF

abc
αβ

Tdq+1
αβ

dq

Decoupling
network+1

dq'
dq

dqf

Tdq-1

αβ
dq

Decoupling
network-1

dq'
dq

dqf

LPF1

LPF2

Phase detector of the DSRF-PLL

Basic

PLL type
Specifies the PLL type. The three-phase PLL can be of type SRF-PLL or
DSRF-PLL. For further explanations on the different PLL implementations
see PLL types above.

Nominal frequency
The nominal frequency of the fundamental component in hertz or radi-
ans/second, see below.

Nominal input voltage
The estimated nominal peak voltage of the input signal in volts (V). This
value is needed to correctly initialize all states in the PLL structure. If this
information is not known, this parameter can be set to zero.

Initial phase-angle
The initial phase-angle of the input signal in rad, per unit (p.u.) or degrees,
see below. The parameter value should be in the range [0, 2π], [0, 1] or [0, 360]
respectively.

Units for frequency and phase
The frequency and phase can be expressed in terms of (rad/s, rad), (Hz,
p.u.) or (Hz, degrees). If the phase is expressed in per unit (p.u.), a value
of 1 is equivalent to the period length of the nominal frequency. This param-
eter also changes the unit of the frequency output of the PLL component.

Controller design

Controller design
Specifies the controller design approach. If the parameter is set to Basic,
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the PI controller gains are automatically set. If the PLL type parame-
ter is set to SRF-PLL, the PLL is designed to have a controller crossover
frequency of half the nominal frequency defined in the parameter Nomi-
nal frequency and a phase margin of at least 60◦. Otherwise, if the PLL
type parameter is set to DSRF-PLL, the PLL is designed to have a controller
crossover frequency equal to the nominal frequency defined in the parame-
ter Nominal frequency and a phase margin of at least 60◦. By using the
Advanced approach, the user can specify the controller Kp and Ki and the fil-
ter gain k freely. Please note, the controller gains have not to be scaled by
the rated input signal amplitude since the both schemes use an amplitude
normalization scheme.

Proportional gain Kp
The proportional gain of the PI controller. This parameter is shown only if
the Controller design parameter is set to Advanced.

Integral gain Ki
The integral gain of the PI controller. This parameter is shown only if the
Controller design parameter is set to Advanced.

Filter coefficient k
The filter gain of the PI controller. This parameter is shown only if the Con-
troller design parameter is set to Advanced and the PLL type parameter
is set to DSRF-PLL.

Probe Signals Theta
The estimated phase-angle of the input signal.

Amplitude
The estimated amplitude of the input signal.

Frequency
The estimated frequency of the input signal.

Input Signal
The input signal of the three-phase PLL block.

References
R. Teodorescu, et. al., “Grid Converters for Photovoltaic and Wind Power Sys-

tems”, John Wiley & Sons Ltd., 2011.
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Position Sensor

Purpose Output measured absolute or relative position as signal

Library Mechanical / Translational / Sensors

Description The Position Sensor measures the relative position of the flange marked with a
dot with respect to the other flange. If the other flange is connected to the refer-
ence frame, the absolute position is measured.

Note Speed and position sensors are ideally compliant. Hence, if multiple
speed or position sensors are connected in series, the speed or position mea-
sured by an individual sensor is undefined. This produces a run-time error.

Parameters Second flange
Controls whether the second flange is accessible or connected to the transla-
tional reference frame.

Initial position
The position at simulation start.

Probe Signal Position
The measured position.
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Product

Purpose Multiply and divide input signals

Library Control / Math

Description The Product block multiplies or divides input signals, which may be scalars of
vectors of the same size.

If the block has multiple inputs, it performs an element-wise multiplication
or division of the input signals. Scalar inputs are expanded to the necessary
width.

If the block has a single input, it calculates the product or the reciprocal of the
product of the elements of the input signal. In this case the sign displayed on
the block icon changes to Π or 1

Π .

Parameter Icon shape
Specifies whether the block is drawn with a round or a rectangular shape.
Round shape icons permit a maximum of three inputs.

List of operators or number of inputs
The inputs can be specified either with a string containing * or / for each
input and | for spacers, or a positive integer declaring the number of inputs.

Output data type
The data type of the output signal. See “Data Types” (on page 43). If you
choose inherited, the minimum data type is int8_t.

Data type overflow handling
Specifies how a data type overflow is handled. See “Data Types” (on page
43). This parameter only appears if Output data type is not set to a
floating-point data type.

Probe Signals Input i
The ith input signal.

Output
The block output signal.
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Pulse Delay

Purpose Delay discrete-value input signal by fixed time

Library Control / Delays

Description The Pulse Delay applies a fixed time delay to an input signal that changes at
discrete instants and is otherwise constant. The signal can be a scalar or vector.

Whenever a change of an input signal is detected at a simulation time t, the
Pulse Delay records the new signal value in an internal buffer and schedules an
event that forces the solver to make a step exactly at the simulation time t+ TD

in order to output the delayed input value.

A typical application of the Pulse Delay is to delay the pulses of a modulator.

Note

• The Pulse Delay should not be used to delay continuous signals as this will
lead to excessive memory consumption. Besides, the output of the Pulse De-
lay is always piece-wise constant. To delay continuously changing signals,
use the continuous Transport Delay (see page 790).

• The Pulse Delay should also not be used to delay signals that have a fixed
sample time. To delay such signals, use a Zero Order Hold (see page 837) or
a Delay (see page 410) depending on the duration of the delay with respect to
the sample time of the input signal.
Suppose that the input signal has a sample time Ts and you want to delay it
by a time TD. Calculate the delay order O = ⌊TD

Ts
⌋ (i.e. the integer part of the

division) and an offset time To = mod(TD, Ts). If O is zero, use a Zero Order
Hold with the sample time [Ts, To]. If O is greater than zero, use a Delay with
the sample time [Ts, To] and the delay order O. For more information regard-
ing sample times, see “Sample Times” (on page 38).

Parameters Time delay Td

The time by which the input signal is delayed, in seconds (s).

Initial output
The output value after simulation start before the input values appear at
the output.
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Pulse Generator

Purpose Generate periodic rectangular pulses

Library Control / Sources

Description The Pulse Generator outputs a signal that periodically switches between a
high- and low-state.

Parameters High-state output
The value of the output signal in the high-state.

Low-state output
The value of the output signal in the low-state.

Frequency
The frequency of the output signal in hertz (Hz).

Duty cycle
The fraction of the period length during which the output signal is in the
high-state. The duty cycle value must be in the range [0, 1]. For example, a
value of 0.1 means that the signal is in the high-state for the first 10% of
the period time.

Phase delay
The phase delay in seconds (s). If the phase delay is 0, the period begins at
the start of the high state.

Output data type
The data type of the output signal. See “Data Types” (on page 43).

Probe Signal Output
The output signal of the pulse generator.
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Quantizer

Purpose Apply uniform quantization to input signal

Library Control / Discontinuous

Description The Quantizer maps the input signal to an integer multiple of the quantization
interval:

y = q ∗ round
(
u

q

)

Parameters Quantization interval
The quantum q used in the mapping function.

Step detection
When set to on, the Quantizer produces a zero-crossing signal that en-
ables the solver to detect the precise instants, at which the output needs
to change. This may be necessary when quantizing a continuous signal.

When set to off, the Quantizer will not influence the step size of the solver.

Probe Signals Input
The input signal.

Output
The output signal.
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Rack and Pinion

Purpose Ideal conversion between translational and rotational motion

Libraries Mechanical / Translational / Components
Mechanical / Rotational / Components

Description The Rack and Pinion models an ideal converter between translational and ro-
tational motion. The relation between the torque, force and speeds of the two
flanges is described with the following equations:

v = R · ω
τ = R · F

where R is the pinion radius.

Parameter Pinion radius
The pinion radius R. A negative value will cause the flanges to move in op-
posite directions.
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Ramp

Purpose Generate constantly rising or falling signal

Library Control / Sources

Description The Ramp block generates a signal that increases or decreases linearly over
time once the start time is reached. The output can be limited to a final value.

Parameters Slope
The slope of the signal (per second).

Start time
The time at which the ramp starts, in seconds (s).

Initial output
The output value before the start time is reached.

Final output
The final value for the output signal. If the parameter is set to inf, the out-
put signal is unlimited.

Probe Signal Output
The output signal of the pulse generator.
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Random Numbers

Purpose Generate uniformly distributed random numbers

Library Control / Sources

Description The Random Numbers block generates uniformly distributed random numbers.
The boundaries of the generated values can be configured in the component di-
alog. The figure below illustrates the distribution for two different sets of pa-
rameters. The seed of the generator initializes the algorithm at the simulation

x

\ (x)

ï4 ï2 0 2 4

0.1

0.2

0.3

0.4  [min, max] = [+/ï 1.5]

 [min, max] = [+/ï 4.0]

start. For the same seed, the sequence of random numbers is reproduced in ev-
ery simulation run. If this behavior is undesired, the system time can be used
as a seed. To minimize correlation effects, it is recommended to use different
seeds if multiple random generators are used in one model.

Parameters Minimum
The lower boundary of the random numbers.

Maximum
The upper boundary of the random numbers.

Seed
The seed used to initialize the Random Numbers generator.

Sample time
A scalar specifying the sampling period or a two-element vector specifying
the sampling period and offset, in seconds (s), used for generating random
output values. See also section “Sample Times” (on page 38).
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Reference
Mersenne Twister: http://en.wikipedia.org/wiki/Mersenne_twister
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Rate Limiter

Purpose Limit rising and falling rate of change

Library Control / Discontinuous

Description The Rate Limiter restricts the first derivative of the signal passing through it.
While the rate of change is within the specified limits, the output follows the
input. When the rate of change exceeds the rising or falling limit, the output
falls behind the input with a fixed slope until output and input become equal
again.

Parameters Rising rate limit
The maximum rate of change of the output signal (typically positive).

Falling rate limit
The minimum rate of change of the output signal (typically negative).

Sample time mode
This parameter lets you choose whether the block operates with a contin-
uous sample time, or whether the sample time is inherited from the input.
For backward compatibility, the default for models created with PLECS 4.3
or older is inherited. Otherwise, the default is continuous. See also sec-
tion “Sample Times” (on page 38).

Probe Signals Input
The input signal.

Output
The output signal.
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Rectangular to Polar

Purpose Convert Cartesian coordinates to polar coordinates

Library Control / Transformations

Description This block transforms a signal representing rectangular coordinates [x, y] into
polar coordinates [r, θ]:

r =
√
x2 + y2

θ = atan2(x, y)

θ is calculated in the range −π ≤ θ ≤ π.
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Relational Operator

Purpose Compare two input signals

Library Control / Logical

Description The Relational Operator compares two input signals. If the comparison is true,
the block outputs 1, otherwise 0. The first input is marked with a dot.

Parameter Relational operator
Chooses which comparison operation is applied to the input signals. Avail-
able operators are
• equal (==),
• unequal (∼=),
• less (<),
• less or equal (<=),
• greater or equal (>=),
• greater (>).

Probe Signals Input
The input signals.

Output
The output signal.
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Relay

Purpose Toggle between on- and off-state with configurable threshold

Library Control / Discontinuous

Description The output of the Relay block depends on its internal state. If the input sig-
nal exceeds the upper threshold, the relay will be in the on-state. It will be in
the off-state if the inputs is less than the lower threshold. The relay does not
change for input values between the thresholds.

Parameters Upper threshold
The highest value that the input signal may reach before the state changes
to the on-state.

Lower threshold
The lowest value that the input signal may reach before the state changes
to the off-state.

On-state output
The value of the output signal while the relay is in the on-state.

Off-state output
The value of the output signal while the relay is in the off-state.

Initial state
The state of the relay at simulation start. Possible values are on and off.

Output data type
The data type of the output signal. See “Data Types” (on page 43).

Probe Signals Input
The block input signal.

Output
The block output signal.

629



15 Component Reference

Resistor

Purpose Ideal resistor

Library Electrical / Passive Components

Description This component provides an ideal resistor between its two electrical termi-
nals. See section “Configuring PLECS” (on page 124) for information on how
to change the graphical representation of resistors.

Parameter Resistance
The resistance in ohms (Ω). All positive and negative values are accepted,
including 0 and inf (∞). The default is 1.

In a vectorized component, all internal resistors have the same resistance
if the parameter is a scalar. To specify the resistances individually use a
vector [R1 R2 . . . Rn] . The length n of the vector determines the width of the
component.

Probe Signals When the resistor is probed, a small dot in the component icon marks the posi-
tive terminal.

Resistor voltage
The voltage measured across the resistor from the positive to the negative
terminal, in volts (V).

Resistor current
The current flowing through the resistor, in amperes (A). A current enter-
ing the resistor at the positive terminal is counted positive.

Resistor power
The power consumed by the resistor, in watts (W).
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RMS Value

Purpose Calculate root mean square (RMS) value of input signal

Library Control / Filters

Description This block calculates the RMS value of a periodic input signal. The sample
time, fundamental frequency and the initial condition can be specified.

Parameters Initial condition
The initial condition describes the input signal before simulation start. If
the input is a scalar signal, the parameter must be a scalar too. If input and
output are vectorized signals, a vector can be used. The number of elements
in the vector must match the number of input signals. The default value of
this parameter is 0.

Sample time
A scalar specifying the sampling period or a two-element vector specify-
ing the sampling period and offset, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38). If a
sample time of 0 is specified, a continuous implementation based on the
Moving Average block (see page 571) is active. The Discrete-Periodic im-
plementation can potentially force a variable-step solver to take small inte-
gration steps. This may slow down the simulation. The default value of this
parameter is 0.

Fundamental frequency
The fundamental frequency of the periodic input signal in hertz (Hz).
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Rotational Algebraic Component

Purpose Define an algebraic constraint in terms of torque and angular speed

Library Mechanical / Rotational / Components

Description The Rotational Algebraic Component enforces an arbitrary algebraic constraint
involving torque and angular speed.

The output signal “ω” measures the angular speed of the marked flange with
respect to the unmarked one. The output signal “τ” measures the torque flow
from the unmarked towards the marked flange. The two output signals must
affect the input signal “0” by means of a direct feedthrough path. The compo-
nent ensures that the input signal is zero at all times.

The direct feedthrough path defines a function f(ω, τ), which in turn implicitly
determines the characteristic curve of the component through the constraint
f(ω, τ) = 0. For instance, the choice f(ω, τ) := τ +D · ω causes the Rotational Al-
gebraic Component to act as a Rotational Damper (see page 636) with damping
constant D.

The Rotational Algebraic Component offers no direct way to specify an initial
displacement. In case you need to do so, place a Rotational Damper with zero
damping constant in parallel to the component and set the initial displacement
property thereof.

By way of illustration, the following schematic shows a possible implementation
of a rotational damper with variable damping constant and prescribed initial
displacement:
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Rotational Algebraic Component

Note The Rotational Algebraic Component creates an algebraic loop. See sec-
tion “Block Sorting” (on page 31) for more information on algebraic loops.

Probe Signals Component torque
The torque flow from the unmarked towards the marked flange.

Component speed
The angular speed of the marked flange with respect to the unmarked one.

Component power
The power consumed by the component.
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Rotational Backlash

Purpose Ideal rotational backlash

Library Mechanical / Rotational / Components

Description The Rotational Backlash models an ideal symmetrical, two-sided Hard Stop
(see page 639) in a rotational system, which restricts the relative displacement
of the two flanges between an upper and lower limit of ± b

2 . While the displace-
ment is within the limits, no torque is transmitted. When the displacement hits
either limit, the flanges become rigidly connected until the transmitted torque
reverses.

Parameters Total backlash
The total permitted displacement b between the flanges, in radians.

Initial displacement
The initial displacement of the flanges, in radians. May be specified in or-
der to provide proper initial conditions if absolute angles are measured any-
where in the system. Otherwise, this parameter can be left blank.

Probe Signals Torque
The transmitted torque flowing from the unmarked to the marked flange, in
newton-meters (Nm).

Displacement
The displacement of the marked flange with respect to the unmarked
flange, in radians.

State
The internal state of the component: -1 in lower limit, 0 inside limits, +1 in
upper limit.
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Rotational Clutch

Purpose Ideal rotational clutch

Library Mechanical / Rotational / Components

Description The Rotational Clutch models an ideal clutch in a rotational system. When en-
gaged, it makes an ideally rigid connection between the flanges; when disen-
gaged, it transmits zero torque. The clutch engages when the input signal be-
comes non-zero and disengages when the input signal becomes zero.

Parameters Initial state
The initial state (engaged/disengaged) of the clutch.

Initial displacement
The initial displacement of the flanges, in radians. May be specified in or-
der to provide proper initial conditions if absolute angles are measured any-
where in the system. Otherwise, this parameter can be left blank.
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Rotational Damper

Purpose Ideal viscous rotational damper

Library Mechanical / Rotational / Components

Description The Rotational Damper models an ideal linear damper in a rotational system
described with the following equations:

τ = −D · ω

where τ is the torque flow from the unmarked towards the marked flange and ω
is the angular speed of the marked flange with respect to the unmarked one.

Parameters Damper constant
The damping (viscous friction) constant D, in

(
Nms
rad

)
.

Initial displacement
The initial displacement of the flanges, in radians. May be specified in or-
der to provide proper initial conditions if absolute angles are measured any-
where in the system. Otherwise, this parameter can be left blank.
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Rotational Friction

Purpose Ideal rotational stick/slip friction

Library Mechanical / Rotational / Components

Description The Rotational Friction models any combination of static, Coulomb and viscous
friction between two flanges in a rotational system. While the component is
stuck, it exerts whatever torque is necessary in order to maintain zero relative
speed between the flanges, up to the limit of the breakaway torque τbrk. When
the breakaway torque is exceeded, the flanges begin sliding against each other,
and the component exerts a torque that consists of the Coulomb friction torque
τC and a speed-dependent viscous friction torque cv · ω.

The figure below shows the speed/torque characteristic and the state chart of
the component. Note that the friction torque is opposed to the movement, hence
the negative sign.

Sticking

Sliding
backward

Sliding
forward

τ > τbrk τ < -τbrk

ω > 0 ω < 0

τbrk

ω

-τ

τC
cv⋅ω

Parameters Breakaway friction torque
The maximum magnitude of the stiction torque τbrk, in newton-meters
(Nm). Must be greater than or equal to zero.

Coulomb friction torque
The magnitude of the (constant) Coulomb friction torque τC, in newton-
meters (Nm). Must be greater than or equal to zero and less than or equal
to the breakaway friction torque.

Viscous friction coefficient
The proportionality coefficient cv that determines the speed dependent vis-
cous friction torque, in

(
Nms
rad

)
.
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Probe Signals Torque
The transmitted torque τ flowing from the unmarked to the marked flange,
in newton-meters (Nm).

Speed
The angular speed ω of the marked flange with respect to the unmarked
flange, in

(
rad
s

)
.

State
The internal state of the component: -1 sliding backward, 0 stuck, +1 slid-
ing forward.
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Rotational Hard Stop

Purpose Ideal rotational hard stop

Library Mechanical / Rotational / Components

Description The Rotational Hard Stop models an ideal one- or two-sided hard stop in a ro-
tational system, which restricts the relative displacement of the two flanges
between an upper and lower limit. While the displacement is within the limits,
no torque is transmitted. When the displacement hits either limit, the displace-
ment is clamped at the limit and the flanges become rigidly connected until the
transmitted torque reverses.

The figure below shows the displacement/torque characteristic and the state
chart of the component.

Inside
limits

Lower
limit

Upper
limit

θ < θmin

θ := θmin θ := θmax

θ > θmax

τ < 0 τ > 0

τ := 0
θmin θmax θ

τ

Parameters Upper limit
The maximum displacement θmax between the flanges. Set to inf to disable
this limit.

Lower limit
The minimum displacement θmin between the flanges. Set to -inf to disable
this limit.

Initial displacement
The initial displacement of the flanges, in radians. May be specified in or-
der to provide proper initial conditions if absolute angles are measured any-
where in the system. Otherwise, this parameter can be left blank.
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Probe Signals Torque
The transmitted torque τ flowing from the unmarked to the marked flange,
in newton-meters (Nm).

Displacement
The displacement θ of the marked flange with respect to the unmarked
flange, in radians.

State
The internal state of the component: -1 in lower limit, 0 inside limits, +1 in
upper limit.
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Rotational Model Settings

Purpose Configure settings for an individual mechanical model.

Library Mechanical / Rotational / Model Settings

Description The Rotational Model Settings block lets you configure parameter settings that
influence the code generation for a particular mechanical system, see also “Code
Generation for Physical Systems” (on page 279).

The block affects the mechanical system that it is attached to by its rotational
terminal. At most one Model Settings block may be attached to an individual
state-space system. A mechanical model can be split into multiple state-space
systems if the underlying model equations are fully decoupled. Note that a ro-
tational system and a translational system that are coupled e.g. with a Rack
and Pinion (see page 622) have coupled model equations. See also the options
Enable state-space splitting and Display state-space splitting in the
“Simulation Parameters” (on page 111).

Parameters Switching algorithm
This parameter allows you two choose between two algorithms to determine
the clutch states in the generated code. See “Switching Algorithm” (on page
280) for details.

Matrix coding style
This setting allows you to specify the format used for storing the state-space
matrices for a physical model. When set to sparse, only the non-zero ma-
trix entries and their row and column indices are stored. When set to full,
matrices are stored as full m × n arrays. When set to full (inlined), the
matrices are additionally embedded in helper functions, which may enable
the compiler to further optimize the matrix-vector-multiplications at the
cost of increased code size.
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Rotational Multiplexer

Purpose Combine several rotational connections into single vector

Library Mechanical / Rotational / Connectivity

Description This multiplexer combines several rotational connections into one vector con-
nection. The individual connections may themselves be vectors. In the block
icon, the first individual connection is marked with a dot.

Parameter Width
This parameter allows you to specify the number and/or width of the indi-
vidual connections. You can choose between the following formats for this
parameter:

Scalar: A scalar specifies the number of individual connections each having
a width of 1.

Vector: The length of the vector determines the number of individual con-
nections. Each element specifies the width of the corresponding individual
connections.
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Rotational Port

Purpose Add rotational flange to subsystem

Library Mechanical / Rotational / Components

Description Rotational ports are used to establish rotational mechanical connections be-
tween a schematic and the subschematic of a subsystem (see page 695). If you
copy a Rotational Port block into the schematic of a subsystem, a terminal will
be created on the subsystem block. The name of the port block will appear as
the terminal label. If you choose to hide the block name by unselecting the show
name option in the block menu, the terminal label will also disappear.

Terminals can be moved around the edges of the subsystem by holding down
the Shift key while dragging the terminal with the left mouse button or by us-
ing the middle mouse button.

Rotational Ports in a Top-Level Schematic

In PLECS Blockset, if a Rotational Port is placed in a top-level schematic, the
PLECS Circuit block in the Simulink model will show a corresponding rota-
tional terminal, which may be connected with other rotational terminals of the
same or a different PLECS Circuit block. The Rotational Port is also assigned
a unique physical port number. Together with the parameter Location on cir-
cuit block the port number determines the position of the rotational terminal
of the PLECS Circuit block.

For compatibility reasons you can also place an Rotational Port in a top-level
schematic in PLECS Standalone. However, since there is no parent system to
connect to, such a port will act like an isolated node.

Parameter Port number
If a Rotational Port is placed in a top-level schematic in PLECS Blockset,
this parameter determines the position, at which the corresponding termi-
nal appears on the PLECS Circuit block.

Location on circuit block
If a Rotational Port is placed in a top-level schematic in PLECS Blockset,
this parameter specifies the side of the PLECS Circuit block on which the
corresponding terminal appears. By convention, left refers to the side on
which also input terminals are shown, and right refers to the side on which
also output terminals are shown.
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Rotational Reference

Purpose Connect to common rotational reference frame

Library Mechanical / Rotational / Components

Description The Rotational Reference implements a connection to the rotational reference
frame that has a fixed absolute angle of zero.
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Rotational Selector

Purpose Select or reorder elements from vector connection

Library Mechanical / Rotational / Connectivity

Description The Rotational Selector block connects the individual elements of the output
connection to the specified elements of the input connection. The input connec-
tion is marked with a dot.

Parameters Input width
The width of the input connection.

Output indices
A vector with the indices of the input elements that the output connection
should contain.
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Rotational Speed (Constant)

Purpose Maintain constant rotational speed

Library Mechanical / Rotational / Sources

Description The Constant Rotational Speed maintains a constant angular speed between its
two flanges regardless of the torque required. The speed is considered positive
at the flange marked with a “+”.

Note A speed source may not be short-circuited or connected in parallel with
other speed sources, nor may a speed source directly drive an inertia.

Parameters Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Speed
The magnitude of the speed, in

(
rad
s

)
. The default value is 1.

Probe Signals Torque
The generated torque τ flowing from the unmarked to the marked flange, in
newton-meters (Nm).

Speed
The angular speed, in

(
rad
s

)
.
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Rotational Speed (Controlled)

Purpose Maintain variable rotational speed

Library Mechanical / Rotational / Sources

Description The Controlled Rotational Speed maintains a variable angular speed between
its two flanges regardless of the torque required. The speed is considered pos-
itive at the flange marked with a “+”. The momentary speed is determined by
the signal fed into the input of the component.

Note A speed source may not be short-circuited or connected in parallel with
other speed sources, nor may a speed source directly drive an inertia.

Parameters Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of mechanical measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Probe Signals Torque
The generated torque τ flowing from the unmarked to the marked flange, in
newton-meters (Nm).

Speed
The angular speed, in

(
rad
s

)
.
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Rotational Speed Sensor

Purpose Output measured angular speed as signal

Library Mechanical / Rotational / Sensors

Description The Rotational Speed Sensor measures the angular speed of the flange marked
with a dot with respect to the other flange.

Note Speed and angle sensors are ideally compliant. Hence, if multiple speed
or angle sensors are connected in series, the speed or angle measured by an in-
dividual sensor is undefined. This produces a run-time error.

Parameter Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Probe Signal Speed
The measured angular speed, in

(
rad
s

)
.
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Rounding

Purpose Round floating point signal to integer values

Library Control / Math

Description This component rounds the value of a floating point signal on its input to an
integer value. The rounding algorithm can be selected in the component param-
eter:

floor
The output is the largest integer not greater than the input, for example
floor(1.7) = 1 and floor(−1.3) = −2.

ceil
The output is the smallest integer not less than the input, for example
ceil(1.3) = 2 and ceil(−1.7) = −1.

round
The output is the integer nearest to the input, for example round(1.4) = 1,
round(−1.3) = −1 and round(−1.5) = −2.

fixed
The output is the integer value of the input with all decimal places trun-
cated, for example fixed(1.7) = 1 and fixed(−1.7) = −1.

Parameter Operation
The rounding algorithm as described above.

Output data type
The data type of the output signal. See “Data Types” (on page 43).

Data type overflow handling
Specifies how a data type overflow is handled. See “Data Types” (on page
43). This parameter only appears if Output data type is not set to a
floating-point data type.

Probe Signals Input
The block input signal.

Output
The block output signal.
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Saturable Capacitor

Purpose Capacitor with piece-wise linear saturation

Library Electrical / Passive Components

Description This component provides a saturable capacitor between its two electrical termi-
nals. The capacitor has a symmetrical piece-wise linear saturation characteris-
tic defined by positive voltage/charge pairs.

Note In order to model a saturation characteristic with n segments, this com-
ponent requires n ideal capacitors and 2(n − 1) ideal switches. It is therefore
advisable to use as few segments as possible.

Parameters Voltage values
A vector of positive voltage values in volts (V) defining the piece-wise linear
saturation characteristic. The voltage values must be positive and strictly
monotonic increasing. At least one value is required.

Charge values
A vector of positive charge values in As defining the piece-wise linear satu-
ration characteristic. The charge values must be positive and strictly mono-
tonic increasing. The number of charge values must match the number of
voltage values.

Initial voltage
The initial voltage across the capacitor at simulation start, in volts (V).
This parameter may either be a scalar or a vector corresponding to the im-
plicit width of the component. The positive pole is marked with a “+”. The
initial voltage default is 0.

Probe Signals Capacitor voltage
The voltage measured across the capacitor, in volts (V). A positive voltage
is measured when the potential at the terminal marked with “+” is greater
than the potential at the unmarked terminal.

Capacitor current
The current flowing through the capacitor, in amperes (A).

Saturation level
The saturation level indicates which sector of the piece-wise linear charac-
teristic is currently applied. During linear operation, i.e. operation in the

650



Saturable Capacitor

first sector, the saturation level is 0. The saturation level is negative for
negative charge and voltage values.
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Saturable Core

Purpose Magnetic core element with saturation

Library Magnetic / Components

Description This component models a segment of a magnetic core. It establishes a non-
linear relationship between the magnetic field strength H and the flux density
B to model saturation effects. The user can choose between the following fitting
functions:

atan fit

The atan fit is based on the arctangent function:

B =
2

π
Bsat tan

−1

(
πH

2a

)
+ µsatH

coth fit

The coth fit was adapted from the Langevian equation for bulk magnetization
without interdomain coupling, and is given as:

B = Bsat

(
coth

3H

a
− a

3H

)
+ µsatH

Both fitting functions have three degrees of freedom which are set by the coef-
ficients µsat, Bsat and a. µsat is the fully saturated permeability, which usually
corresponds to the magnetic constant µ0, i.e. the permeability of air. Bsat de-
fines the knee of the saturation transition between unsaturated and saturated
permeability:

Bsat = (B − µsatH)
∣∣∣
H→∞

The coefficient a is determined by the unsaturated permeability µunsat at H = 0:

a = Bsat/ (µunsat − µsat)

The figure below illustrates the saturation characteristics for both fitting func-
tions. The saturation curves differ only around the transition between unsatu-
rated and saturated permeability. The coth fit expresses a slightly tighter tran-
sition than the atan fit.
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coth fit

atan fit

µunsat

µsat

H

B

Bsat

Parameters Fitting functions
Saturation characteristic modeled with atan or coth fit.

Cross-sectional area
Cross-sectional area A of the flux path, in square meters (m2).

Length of flux path
Length l of the flux path, in meters (m).

Unsaturated rel. permeability
Relative permeability µr,unsat = µunsat/µ0 of the core material for H → 0.

Saturated rel. permeability
Relative permeability µr,sat = µsat/µ0 of the core material for H → ∞.

Flux density saturation
Knee Bsat of the saturation transition between unsaturated and saturated
permeability.

Initial MMF
Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked ter-
minal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.
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Field strength
The magnetic field strength H in the core element, in amperes per meter
(A/m).

Flux density
The magnetic flux density B in the core element, in teslas (T).
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Saturable Inductor

Purpose Inductor with piece-wise linear saturation

Library Electrical / Passive Components

Description This component provides a saturable inductor between its two electrical termi-
nals. The inductor has a symmetrical piece-wise linear saturation characteristic
defined by positive current/flux pairs.
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The operating mode of the saturable inductor is illustrated in the schematic be-
low. In the unsaturated state the current flows only through the main induc-
tor L0. When the absolute value of the current exceeds the threshold I1, the
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breaker in series with the auxiliary inductor L1 is closed. The differential in-
ductivity of the component thus becomes Ldiff = L0L1

L0+L1
. On the other hand, the

total inductivity is calculated as Ltot = L0i0+L1i1
i0+i1

, where i0 and i1 are the mo-
mentary inductor currents.

Note In order to model a saturation characteristic with n segments, this com-
ponent requires n ideal inductors and 2(n − 1) ideal switches. It is therefore
advisable to use as few segments as possible.

Parameters Current values
A vector of positive current values I in amperes (A) defining the piece-wise
linear saturation characteristic. The current values must be positive and
strictly monotonic increasing. At least one value is required.

Flux values
A vector of positive flux values Ψ in (Vs) defining the piece-wise linear sat-
uration characteristic. The flux values must be positive and strictly mono-
tonic increasing. The number of flux values must match the number of cur-
rent values.

Initial current
The initial current through the inductor at simulation start, in amperes (A).
This parameter may either be a scalar or a vector corresponding to the im-
plicit width of the component. The direction of a positive initial current is
indicated by a small arrow at one of the terminals. The initial current de-
fault is 0.

Probe Signals Inductor current
The current flowing through the inductor, in amperes (A). The direction of a
positive current is indicated with a small arrow at one of the terminals.

Inductor voltage
The voltage measured across the inductor, in volts (V).

Saturation level
The saturation level indicates which sector of the piece-wise linear charac-
teristic is currently applied. During linear operation, i.e. operation in the
first sector, the saturation level is 0. The saturation level is negative for
negative flux and current values.
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Saturable Transformers

Purpose Single-phase transformers with two resp. three windings and core saturation

Library Electrical / Passive Components

Description These transformers model two or three coupled windings on the same core.
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The core saturation characteristic is piece-wise linear and is modeled using the
Saturable Inductor (see page 655). The magnetizing current im and flux Ψm

value pairs are referred to the primary side. To model a transformer without
saturation enter 1 as the magnetizing current values and the desired magnetiz-
ing inductance Lm as the flux values. A stiff Simulink solver is recommended if
the iron losses are not negligible, i.e. Rfe is not infinite.

In the transformer symbol, the primary side winding is marked with a little
circle. The secondary winding is marked with a dot at the outside terminal, the
tertiary winding with a dot at the inside terminal.

Parameters Leakage inductance
A vector containing the leakage inductance of the primary side L1, the sec-
ondary side L2 and, if applicable, the tertiary side L3. The inductivity is
given in henries (H).

Winding resistance
A vector containing the resistance of the primary winding R1, the secondary
winding R2 and, if applicable, the tertiary winding R3, in ohms (Ω).
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No. of turns
A vector containing the number of turns of the primary winding n1, the sec-
ondary winding n2 and the tertiary winding n3, if applicable.

Magnetizing current values
A vector of positive current values in amperes (A) defining the piece-wise
linear saturation characteristic of the transformer legs. The current values
must be positive and strictly monotonic increasing. At least one value is re-
quired.

Magnetizing flux values
A vector of positive flux values in (Vs) defining the piece-wise linear satura-
tion characteristic. The flux values must be positive and strictly monotonic
increasing. The number of flux values must match the number of current
values.

Core loss resistance
An equivalent resistance Rfe representing the iron losses in the transformer
core. The value in ohms (Ω) is referred to the primary side.

Initial current
A vector containing the initial currents on the primary side i1, the sec-
ondary side i2 and the tertiary side i3, if applicable. The currents are given
in amperes (A) and considered positive if flowing into the transformer at
the marked terminals. The default is [0 0 0].
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Saturation

Purpose Limit input signal to upper and/or lower value

Library Control / Discontinuous

Description The saturation block limits a signal to an upper and/or lower value. If the input
signal is within the saturation limits, the output signal is identical to the input
signal.

Parameters Upper limit
The highest value that the input signal may reach before the output signal
is clipped. If the value is set to inf, the output is unlimited.

Lower limit
The lowest value that the input signal may reach before the output signal is
clipped. If the value is set to -inf, the output is unlimited.

Probe Signals Input
The block input signal.

Output
The block output signal.
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Sawtooth PWM

Purpose Generate PWM signal using sawtooth carrier

Library Control / Modulators

Description 2-level PWM generator with a sawtooth carrier. The input m is the modulation
index, and the output s is the switching function. If the modulation index is a
vector, the switching function is also a vector of the same width.

The block can be used to control the IGBT Converter (see page 494) or the ideal
Converter (see page 479). In these cases the modulation index must have a
width of 3 to match the number of inverter legs.

The following figures illustrate different sampling methods offered by the mod-
ulator block. In the figure on the left, Natural Sampling is used. The right fig-
ure shows Regular Sampling, i.e. the modulation index is updated at the verti-
cal flanks of the carrier. In both figures carrier signals with falling ramps are
employed.
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Parameters Sampling
Choose between Natural and Regular Sampling.

Ramp
Choose between rising and falling ramps in the carrier signal.

Carrier frequency
The frequency f of the carrier signal, in hertz (Hz).

Carrier phase shift
The time offset of the carrier signal, in per unit (p.u.) of the carrier period.

Carrier limits
The range of the sawtooth carrier. The default is [-1 1].

Output values
Values of the switching function in off-state and on-state. The default is [-
1 1].
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Sawtooth PWM (3-Level)

Purpose Generate 3-level PWM signal using sawtooth carriers

Library Control / Modulators

Description 3-level PWM generator with a sawtooth carrier. The input m is the modulation
index. The switching function s outputs either 1, 0 or −1. If the modulation in-
dex is a vector, the switching function is also a vector of the same width.

The block can be used to control the 3-Level IGBT Converter (see page 484) or
the ideal 3-Level Converter (see page 478). In these cases the modulation index
must have a width of 3 to match the number of inverter legs.

The figures below illustrate different sampling methods offered by the modula-
tor block. In the left figure, Natural Sampling is used. The right figure shows
Regular Sampling, i.e. the modulation index is updated at the vertical flanks of
the carrier. In both figures carrier signals with rising ramps are employed.
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Parameters Sampling
Choose between Natural and Regular Sampling.

Ramp
Choose between rising and falling ramps in the carrier signal.

Carrier frequency
The frequency f of the carrier signal, in hertz (Hz).

Carrier phase shift
The time offset of the carrier signal, in per unit (p.u.) of the carrier period.

Carrier limits
The range of the sawtooth carriers. The default is [-1 1].
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Scope

Purpose Display simulation results versus time

Library System

Description The PLECS scope displays the measured signals of a simulation. It can be used
in PLECS circuits as well as in Simulink models.

A number of analysis tools and data display options allow detailed analysis of
the measured signals. For more information on how to work with the scope see
section “Using the PLECS Scope” (on page 99).

Parameters
Scope Setup

Number of plots
This parameter specifies the number of plots shown in the scope window.
Each plot corresponds to a terminal on the outside of the block. For each
plot, a tab is displayed in the lower part of the dialog where the plot set-
tings can be edited.

Sample time
A scalar specifying the sampling period or a two-element vector specifying
the sampling period and offset, in seconds (s), used to sample the input sig-
nals. The default is -1 (inherited). Other valid settings are 0 (continuous)
or a valid fixed-step discrete sample time pair. See also section “Sample
Times” (on page 38).

Limit samples
If this option is selected, the PLECS scope will only save the last n sample
values during a simulation. It can be used in long simulations to limit the
amount of memory that is used by PLECS. If the option is unchecked, all
sample values are stored in memory.

Time Axis Parameters

Display time axis
The time axis is either shown underneath each plot or underneath the last
plot only.

Time axis label
The time axis label is shown below the time axis in the scope.
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Time range
The time range value determines the initial time range that is displayed in
the scope, in seconds (s). If set to auto, the simulation time range is used.

Scrolling mode
The scrolling mode determines the way in which the x-axis is scrolled if dur-
ing a simulation the current simulation time goes beyond the right x-axis
limit.

In the paged mode, the plots are cleared when the simulation time reaches
the right limit and the x-axis is scrolled by one full x-axis span, i.e. the for-
mer right limit becomes the new left limit.

In the continuous mode, the plots are continuously scrolled so that new
data is always drawn at the right plot border. Note that this mode may af-
fect runtime performance as it causes frequent updates of relatively large
screen areas.

Individual Plot Parameters

Title
The name which is displayed above the plot.

Axis label
The axis label is displayed on the left of the y-axis.

Y-limits
The initial lower and upper bound of the y-axis. If set to auto, the y-axis
limits are automatically chosen based on the minimum and maximum curve
value in the visible time range. If you check the Keep baseline option, the
limits are chosen so that the specified baseline value is always included.
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Set/Reset Switch

Purpose Bistable on-off switch

Library Electrical / Switches

Description This component provides an ideal short or open circuit between its two electri-
cal terminals. The switch closes when the closing signal (the upper input in the
component icon) becomes non-zero. It opens when the opening signal (the lower
input) becomes non-zero. The Set/Reset Switch provides the basis for all other
switches and power semiconductor models in PLECS.

Parameters Initial conductivity
Initial conduction state of the switch. The switch is initially open if the pa-
rameter evaluates to zero, otherwise closed. This parameter may either be a
scalar or a vector corresponding to the implicit width of the component. The
default value is 0.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on page
131).

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).

Probe Signals Switch conductivity
Conduction state of the switch. The signal outputs 0 if the switch is open,
and 1 if it is closed.

Switch temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

Switch conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.
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Switch switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.
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Signal Demultiplexer

Purpose Split vectorized signal

Library System

Description This demultiplexer extracts the components of a input signal and outputs them
as separate signals. The output signals may be scalars or vectors. In the block
icon, the first output is marked with a dot.

Parameter Number of outputs
This parameter allows you to specify the number and width of the output
signals. You can choose between the following formats for this parameter:

Scalar: A scalar specifies the number of scalar outputs. If this format is
used, all output signals have a width of 1.

Vector: The length of the vector determines the number of outputs. Each
element specifies the width of the corresponding output signal.
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Signal From

Purpose Reference signal from Signal Goto block by name

Library System

Description The Signal From block references another signal from a Signal Goto block. All
Signal From blocks connect to the Signal Goto block with the same tag within
the given scope. If no matching Signal Goto block is found, an error message
will be displayed when starting a simulation.

The parameter dialog of the Signal From block provides a link to the corre-
sponding Signal Goto block. Note that the link is not updated until you click
the Apply button after changing the tag name or scope.

Parameters Tag name:
The tag names of the Signal From and Signal Goto blocks must match to
establish a connection.

Scope:
The scope specifies the search depth for the matching Signal Goto block.
Using the value Global the complete PLECS circuit is searched. When
set to Schematic only the schematic containing the Signal From block is
searched. The setting Masked Subsystem causes a lookup within the hier-
archy of the masked subsystem in which the block is contained. If the block
is not contained in a masked subsystem. a global lookup is done.
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Signal Goto

Purpose Make signal available by name

Library System

Description The Signal Goto block forwards its input signal to a number of Signal From
blocks within the same scope. All Signal From blocks connect to the Signal Goto
block with the same tag within the given scope. It is not allowed to have multi-
ple Signal Goto blocks with the same tag name within the same scope.

The parameter dialog of the Signal Goto block provides a list of links to the cor-
responding blocks, i.e. all Signal From blocks with a matching tag name and
scope. Note that the list is not updated until you click the Apply button after
changing the tag name or scope.

Parameters Tag name:
The tag names of the Signal From and Signal Goto blocks must match to
establish a connection.

Scope:
The scope specifies the search depth for the matching Signal From blocks.
Using the value Global the complete PLECS circuit is searched. When
set to Schematic only the schematic containing the Signal From block is
searched. The setting Masked Subsystem causes a lookup within the hier-
archy of the masked subsystem in which the block is contained. If the block
is not contained in a masked subsystem, a global lookup is done.
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Signal Inport

Purpose Add signal input connector to subsystem

Library System

Description

1

Inports are used to feed signals from a schematic into a subschematic. In
PLECS Blockset, inports are also used to feed signals from a Simulink model
into a PLECS circuit. If you copy an input block into a schematic, an input ter-
minal will be created on the corresponding subsystem block. The name of the
input block will appear as the terminal label. If you choose to hide the block
name by unselecting the show button in the dialog box, the terminal label will
also disappear.

Input Blocks in a Top-Level Circuit

If an input block is placed in a top-level schematic, a unique input port number
is assigned to the block. In PLECS Blockset, this port number determines the
position of the corresponding input terminal of the PLECS Circuit block in the
Simulink model.

For top-level inputs in PLECS Blockset you can also specify whether the input
signal is used as a continuous signal in order to control e.g. sources or as a dis-
crete gate signal in order to feed control the gate of a switch or semiconductor.
Continuous signal inputs have direct feedthrough which can lead to algebraic
loops if there is a direct path from a circuit output to a (continuous) circuit in-
put. In contrast, gate signal inputs do not have direct feedthrough. However,
they are expected to change only at discrete instants. Using a gate signal input
to feed a continuous signal into a Circuit block can lead to unexpected results.
The standard setting auto causes PLECS to determine the signal type based on
the internal connectivity.

Input Blocks in a Subsystem

If placed in a subschematic, the inputs are not identified by numbers since ter-
minals on subsystem blocks can be freely positioned. Which terminal corre-
sponds to which input block can only be seen from the block name. In order to
move a terminal with the mouse around the edges of a subsystem block hold
down the Shift key while dragging the terminal with the left mouse button or
use the middle mouse button.
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Parameters Width
The width of the input signal. The default auto means that the width is in-
herited from connected blocks.

Signal type
The input signal type (see the description above). This parameter appears
only in PLECS Blockset if the block is placed in a top-level schematic.

Port number
The terminal number of the input block. This parameter appears only in
PLECS Blockset if the block is placed in a top-level schematic.

Output data type
The data type of the output signal. See “Data Types” (on page 43). This pa-
rameter appears only if the block is placed in a top-level schematic or in an
atomic subsystem (see “Virtual and Atomic Subsystems” on page 695).

Data type overflow handling
Specifies how a data type overflow is handled. See “Data Types” (on page
43). This parameter only appears if Output data type is not set to a
floating-point data type.
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Signal Multiplexer

Purpose Combine several signals into vectorized signal

Library System

Description This multiplexer combines several signals into a vectorized signal. The input
signals may be scalars or vectors. In the block icon, the first input is marked
with a dot.

Parameter Number of inputs
This parameter allows you to specify the number and width of the input sig-
nals. You can choose between the following formats for this parameter:

Scalar: A scalar specifies the number of scalar inputs to the block. If this
format is used, the block accepts only signals with a width of 1.

Vector: The length of the vector determines the number of inputs. Each
element specifies the width of the corresponding input signal.
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Signal Outport

Purpose Add signal output connector to subsystem

Library System

Description

1

Outports are used to feed signals from subschematic to the parent schematic.
In PLECS Blockset, outports are also used to feed signals from a PLECS circuit
back to Simulink. If you copy an output block into a schematic, an output ter-
minal will be created on the corresponding subsystem block. The name of the
output block will appear as the terminal label. If you choose to hide the block
name by unselecting the show button in the dialog box, the terminal name will
also disappear.

Output Blocks in a Top-Level Circuit

If an output block is placed in a top-level circuit, a unique output port number
is assigned to the block. In PLECS Blockset, this port number determines the
position of the corresponding output terminal of the PLECS Circuit block in the
Simulink model.

Output Blocks in a Subsystem

If placed in a subschematic, the outputs are not identified by numbers since
terminals on subsystem blocks can be freely positioned. Which terminal cor-
responds to which output block can only be seen from the block name. In order
to move a terminal with the mouse around the edges of a subsystem hold down
the Shift key while dragging the terminal with the left mouse button or use the
middle mouse button.

Parameters Width
The width of the output signal. The default auto means that the width is
inherited from connected blocks.

Output when disabled
This parameter appears only if the block is placed in an enabled subsystem
(see the Enable block on page 447) and determines the output signal while
the subsystem is disabled. If you select held, the output will hold the most
recent value before the subsystem was disabled. If you select reset, the out-
put will be reset to the initial output value (see below).

674



Signal Outport

Initial output
This parameter appears only if the block is placed in an enabled and/or trig-
gered subsystem (see the Enable block on page 447 and the Trigger block
on page 797) and specifies the initial output before the subsystem is first
enabled or triggered.

Port number
The terminal number of the output block. This parameter appears only if
the block is placed in a top-level circuit.
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Signal Selector

Purpose Select or reorder elements from vectorized signal

Library System

Description The Signal Selector block generates an output vector signal that consists of the
specified elements of the input vector signal.

See also the Dynamic Signal Selector block (see page 438).

Parameters Input width
The width of the input signal vector.

Output indices
A vector with the indices of the input elements that the output vector
should contain.
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Signal Switch

Purpose Select one of two input signals depending on control signal

Library Control / Discontinuous

Description While the Signal Switch is in the off-state the output is connected to the in-
put terminal indicated in the icon. When the switch criteria is met, the switch
changes to the on-state and the output is connected to the opposite input termi-
nal.

Parameters Criteria
The switch criteria which has to be met to put the switch in the on-state.
Available choices are
• u >= Threshold,
• u > Threshold and
• u ∼= Threshold.

Threshold
The threshold value used for the switch criteria.

Probe Signals Inputs
The block input signals.

Output
The block output signal.

Switch position
The state of the switch. The output is 0 while the switch is in the off-state
and 1 while it is in the on-state.
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Signum

Purpose Provide sign of input signal

Library Control / Math

Description The Signum block outputs 1 for positive, -1 for negative and 0 for 0 input val-
ues.

Probe Signals Input
The block input signal.

Output
The block output signal.
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Sine Wave

Purpose Generate time-based sine wave with optional bias

Library Control / Sources

Description The Sine Wave block generates a sinusoidal output signal with an optional bias
according to the equation

y = A · sin(ω · t+ φ) + C ω = 2πf

If a variable-step solver is used, the solver step size is automatically limited to
ensure that a smooth waveform is produced.

Parameters Amplitude
The amplitude A of the sine wave signal.

Bias
The offset C that is added to the sine wave signal.

Frequency
The frequency of the sine wave in hertz (f ) or radians/second (ω), see below.

Phase
The phase φ of the sine wave in rad, per unit (p.u.) or degrees, see below.
The parameter value should be in the range [0, 2π], [0, 1] or [0, 360] respec-
tively.

Units for frequency and phase
The frequency and phase can be expressed in terms of (rad/s, rad), (Hz,
p.u.) or (Hz, degrees). If the phase is expressed in per unit (p.u.), a value
of 1 is equivalent to the period length.

Probe Signal Output
The block output signal.
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Small Signal Gain

This block is included only in the PLECS Standalone library.

Purpose Measure loop gain of closed control loop using small-signal analysis

Library Control / Small Signal Analysis

Description This block uses the Small Signal Perturbation block see page 681 and the Small
Signal Response block see page 682 to inject a perturbation into a feedback loop
and measure the system response. To see the implementation choose Look un-
der mask from the Subsystem submenu of the block’s context menu.

For detailed information regarding small-signal analysis see chapter “Analysis
Tools” (on page 179).

Parameter Compensate for negative feedback
When set to on, the underlying Small Signal Response block inverts the ref-
erence input in order to compensate for a negative unity gain that is intro-
duced when the feedback signal is subtracted from a reference signal.

When set to off, the reference input is taken as is.
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Small Signal Perturbation

This block is included only in the PLECS Standalone library.

Purpose Generate perturbation signal for small-signal analysis

Library Control / Small Signal Analysis

Description During a small-signal analysis that references this block, it generates the ap-
propriate perturbation signal: a sinusoidal signal for an AC Sweep and a dis-
crete pulse for an Impulse Response Analysis. At all other times the perturba-
tion is zero.

For detailed information regarding small-signal analysis see chapter “Analysis
Tools” (on page 179).

Parameter Show feed-through input
When set to on, the block displays an input port. The output signal is the
sum of the input signal and the perturbation. The default is off.
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Small Signal Response

This block is included only in the PLECS Standalone library.

Purpose Measure system response for small-signal analysis

Library Control / Small Signal Analysis

Description During a small-signal analysis that references this block, it records the sig-
nal(s) that are connected to the block input(s) in order to calculate the transfer
function

G(s) =
Y (s)

U(s)

If the reference input is shown, U(s) is calculated from the signal that is con-
nected to it. Otherwise, U(s) is calculated from the perturbation signal gener-
ated by the corresponding Small Signal Perturbation block see page 681.

For detailed information regarding small-signal analysis see chapter “Analysis
Tools” (on page 179).

Parameters Show reference input
Specifies whether or not the block shows the reference input port.

Invert reference input
Specifies whether or not the reference input signal is inverted, i.e. multi-
plied with −1.
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Space Vector PWM

Purpose Generate PWM signals for 3-phase inverter using space-vector modulation
technique

Library Control / Modulators

Description The space vector modulator generates a reference voltage vector, −→Vs, at the ac
terminals of a three-phase voltage source converter shown below. The reference
vector is defined in the αβ coordinate system: −→Vs = V ∗

α + j V ∗
β .

Vdc

leg A leg B leg C

Vs
a
b
c

Operation The conventional construction of the reference voltage vector, −→Vs, is graphically
depicted below.

Rather than calculating the relative on-times τa, τb, τ0 for the switching vectors−→
Va,

−→
Vb and the zero vector, this block uses an equivalent index-based modula-

tion approach to achieve different SVPWM modulation strategies by manip-
ulating the three-phase sinusoidal modulation indices with different injected
zero-sequence patterns.

This block is implemented with a 3-Phase Index-Based Modulation block (see
page 351) in series with a Symmetrical PWM block (see page 706). The Sym-
metrical PWM block is configured to use the Regular (single update at
min.) sampling scheme, where the incoming modulation index is sampled only
at the minimum of the symmetrical triangular carrier.

The following figures show the switching patterns for different SVPWM strate-
gies. Every figure shows only one switching cycle that resides in the first half of
Sector 1, i.e. between 0 and 30 degrees of the AC period. This is when ua(t) >
0 > ub(t) > uc(t).
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v7 (111)

vs

Sector 2

Sector 1Sector 3

Sector 4 Sector 6

Sector 5

vβ*

vα*

 

 

α

β
v2 (110)

v1 (100)

v3 (010)

v4 (011)

v5 (001) v6 (101)

v0 (000)

Construction of the reference vector −→
Vs.

• The Symmetrical strategy always uses both zero vectors −→
V0 (000) and −→

V7 (111),
by placing one in the center of the period and the other one evenly split at
the beginning and the end of the period.

• DPWM1, DPWM2 and DPWMMAX happen to result in the same switching
pattern inside this 30-degree interval. In this interval they only utilize one
zero vector −→

V7 (111), evenly split at the beginning and the end of the period.
• DPWM0, DPWM3 and DPWMMIN happen to result in the same switching

pattern inside this 30-degree interval. In this interval they only utilize one
zero vector −→

V0 (000), placed in the center of the period.

To see how the modulation index pattern evolves throughout the other sectors
for each modulation strategy, please refer to the documentation of the 3-Phase
Index-Based Modulation block on page 351.
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Sa

Sb

Sc

v0
(0 0 0 )

v1
(1 0 0 )

v1
(1 0 0 )

v2
(11 0 )

v2
(11 0 )

Switching pattern (Symmetrical)

Sa

Sb

Sc

v0
(0 0 0 )

v7
(111 )

v1
(1 0 0 )

v2
(11 0 )

v1
(1 0 0 )

v2
(11 0 )

v7
(111 )

Switching pattern (DPWM 1/2/MAX)

Sa

Sb

Sc

v1
(1 0 0 )

v7
(111 )

v7
(111 )

v2
(11 0 )

v2
(11 0 )

Switching pattern for different SVPWM modulation strategies, example for
one switching cycle inside the first half of Sector 1 with an angle between 0 to
30 degrees of the AC period (i.e. ua(t) > 0 > ub(t) > uc(t)).
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Parameters Modulation strategy
The modulation strategy can be set to Symmetrical, DPWM0, DPWM1, DPWM2,
DPWM3, DPWMMIN, and DPWMMAX using a combo box. All these strategies follow
the same space vector modulation theory, the major difference is in the uti-
lization of the two available zero vectors - −→V0 (000) and −→

V7 (111) inside each
switching period regarding different sector intervals.

Switching frequency
The switching frequency in hertz (Hz).

Output values
The switch output values in the high and low state. The values should be
selected to match the inverter’s gate control logic so that a high value turns
on the upper switch in the leg and the low value turns on the lower switch.
The default values are [−1 1].

Inputs and
Outputs

DC voltage
The input signal Vdc is the voltage measured on the dc side of the inverter.

Reference voltage
This input, labeled V ∗

αβ , is a two-dimensional vector signal comprising the
elements [V ∗

α , V
∗
β ].

Switch output
The output labeled sw is formed from three switch control signals,
[Sa, Sb, Sc], which control the inverter legs A, B, and C. Each switch signal
controls the upper and lower switches in the respective leg.

Probe Signals 3-phase modulation index
A vector signal consisting of the three-phase modulation indices,
[ma,mb,mc] for the chosen space vector modulation strategy.
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Space Vector PWM (3-Level)

Purpose Generate PWM signals for a 3-phase 3-level neutral-point clamped inverter us-
ing space-vector modulation technique

Library Control / Modulators

Description The 3-level space-vector modulator generates a voltage vector on the ac termi-
nals of a neutral-point clamped 3-phase inverter according to a reference signal
provided in the stationary αβ reference frame.

By controlling the semiconductor gate signals, each ac terminal can be con-
nected either to the high (+), low (-) or neutral (o) point of the dc link. This re-
sults in 27 vectors including 12 short vectors, 6 medium vectors and 6 long vec-
tors, as well as 3 zero vectors. Under the assumption of balanced voltages on
the capacitors Vdc+ and Vdc− the space-vector diagram is graphically depicted
below.
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1 
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4 

The hexagon area can be divided in to six sectors (1 to 6), each of which has four
zones (1 to 4). As an example, consider the reference voltage V⃗ ∗ to be located in
zone 2 of sector 1. In order to generate the reference voltage V⃗ ∗ on the ac termi-
nals, the adjacent vectors V⃗1, V⃗3 and V⃗5 are selected and weighted by time. The
on-time of each vector with respect to the switching period is calculated as:

τa = 1− 2k sin (θ)

τb = 2k sin
(π
3
+ θ

)
− 1

τc = 1− 2k sin
(π
3
− θ

)
This block implements a symmetrical sequence to achieve minimum total har-
monic distortion (THD). The short vectors have redundant switch states, e.g. V⃗1

can be either generated by the combination (+oo) or (o--). In order to keep the
dc link voltages balanced, both switch states must be applied for the same du-
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ration during one switching period. The resulting switch pattern is illustrated
below:
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Sb

Sc

Parameters Switching frequency
The switching frequency in hertz (Hz).

Output values
The switch output values in the high, neutral and low state. The default
values are [-1 0 1].

Inputs and
Outputs

DC voltage
The input signal Vdc is the sum of the two dc link voltages Vdc+ and Vdc−.
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Reference voltage
This input, labeled V ∗

αβ , is a two-dimensional vector signal comprising the
elements [V ∗

α , V
∗
β ].

Switch output
The output labeled sw is formed from the three switch signals [Sa, Sb, Sc],
which control the converter legs A, B and C. Each switch signal determines
if the corresponding ac terminal shall be connected to the positive, neutral
or negative side of the dc link.

Probe Signals sector
A value in the set of [1..6] that indicates the sector in which the reference
vector, V⃗ ∗, is located.

zone
A value in the set of [1..4] that indicates the zone in which the reference vec-
tor, V⃗ ∗, is located.

tau
A vector signal comprising the three relative on-time values, [τa, τb, τc].

sw
A vector signal consisting of the three gate signals for the inverter legs,
[Sa, Sb, Sc].

690



SR Flip-flop

SR Flip-flop

Purpose Implement set-reset flip-flop

Library Control / Logical

Description The SR Flip-flop behaves like a pair of cross-coupled NOR logic gates. The out-
put values correspond to the following truth table:

S R Q /Q

0 0 No change No change

0 1 0 1

1 0 1 0

1 1 Restricted (0) Restricted (0)

The combination S = R = 1 is restricted because both outputs will be set to 0, vi-
olating the condition Q = not(/Q). If both inputs change from 1 to 0 in the same
simulation step, Q will be set to 0 and /Q to 1.

Parameter Initial state
The state of the flip-flop at simulation start.

Probe Signals S
The input signal S.

R
The input signal R.

Q
The output signals Q.

/Q
The output signals /Q.
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State Machine

Purpose Model a state machine

Library Control / State Machine

Description The State Machine block lets you graphically create and edit state machines
and simulate them together with a surrounding system. For a detailed descrip-
tion of State Machines see chapter “State Machines” (on page 235).
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State Space

State Space

Purpose Implement linear time-invariant system as state-space model

Library Control / Continuous

Description The State Space block models a state space system of the form
ẋ = Ax+ Bu, y = Cx+Du, where x is the state vector, u is the input vector, and
y is the output vector.

Parameters A,B,C,D
The coefficient matrices for the state space system. The dimensions for the
coefficient matrices must conform to the dimensions shown in the diagram
below:

where n is the number of states, m is the width of the input signal and p is
the width of the output signal.

Initial condition
A vector of initial values for the state vector, x.

Probe Signals Input
The input vector, u.

Output
The output vector, y.
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Step

Purpose Output a signal step.

Library Control / Sources

Description The Step block generates an output signal that changes its value at a given
point in time.

Parameters Step time
The time at which the output signal changes its value, in seconds (s).

Initial output
The value of the output signal before the step time is reached.

Final output
The value of the output signal after the step time is reached.

Output data type
The data type of the output signal. See “Data Types” (on page 43).

Probe Signal Output
The block output signal.
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Subsystem

Purpose Create functional entity in hierarchical simulation model,

Library System

Description A subsystem block represents a system within another system. In order to cre-
ate a subsystem, copy the subsystem block from the library into your schematic.
You can then open the subsystem block and copy components into the subsys-
tem’s window.

The input, output, and physical terminals on the block icon correspond to the
input, output, and physical port blocks in the subsystem’s schematic. If the
block names are not hidden, they appear as terminal labels on the subsystem
block.

You can move terminals with the mouse around the edges of the subsystem by
holding down the Shift key while dragging them with the left mouse button or
by using the middle mouse button.

Note A subsystem can be converted to a configurable subsystem (see the Con-
figurable Subsystem block on page 390) by selecting Convert to configurable
subsystem from the Subsystem submenu of the Edit menu or the block’s con-
text menu.

Virtual and Atomic Subsystems

By default, PLECS treats subsystems as virtual, which means that they only
represent a graphical grouping of the components that they comprise. At sim-
ulation start, virtual subsystems are flattened and the components they com-
prise are ordered individually when PLECS determines their proper execution
order (see “Block Sorting” on page 31).

In an atomic subsystem, on the other hand, the components are not only
grouped graphically but they are also executed as a group. This is necessary if
the execution depends on a condition such as a common sample time or an en-
able and/or a trigger signal (see the Enable block on page 447 and the Trigger
block on page 797).
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Whether a subsystem is virtual or atomic is controlled by the subsystem execu-
tion settings.

Note A subsystem that has physical terminals cannot be made atomic.

Execution
Settings

To open the dialog for editing the subsystem settings, select the block, then
choose Execution settings... from the Subsystem submenu of the Edit menu
or the block’s context menu.

Treat as atomic unit
If this parameter is checked, PLECS treats the subsystem as atomic, other-
wise as virtual (see “Virtual and Atomic Subsystems” above).

Minimize occurrence of algebraic loops
This parameter only applies to atomic subsystems. If it is unchecked,
PLECS assumes that all inputs of the subsystem have direct feedthrough,
i.e. the output functions of the blocks feeding these inputs must be exe-
cuted before the output function of the subsystem itself can be executed
(see “Block Sorting” on page 31). If the atomic subsystem is part of a feed-
back loop, this can result in algebraic loop errors where a virtual subsystem
could be used without problems.

If the parameter is checked, PLECS determines the actual feedthrough be-
havior of the individual inputs from the internal connectivity. A subsystem
input that is internally only connected to non-direct feedthrough inputs of
other blocks (e.g. the inputs of Integrator, Memory or Delay blocks) does not
have direct feedthrough. This can help reduce the occurrence of algebraic
loops.

Sample time
A scalar specifying the sampling period or a two-element vector specifying
the sampling period and offset, in seconds (s). This parameter is enabled
only if the subsystem is atomic and specifies the sample time with which
the subsystem and the components that it comprises are executed. A set-
ting of auto (which is the default) causes the subsystem to choose its sample
time based on the components that it comprises. See also section “Sample
Times” (on page 38).

Enable code generation
Checking this option causes the subsystem to be added to the list of systems
in the Coder Options dialog (see “Generating Code” on page 285). Note that
it is not possible to enable code generation for a subsystem that is contained
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Subsystem

by or that itself contains other subsystems that enable code generation.
Checking this option also implicitly makes the subsystem atomic and dis-
ables the minimization of algebraic loops.

Discretization step size
This parameter is enabled only if code generation is enabled. It specifies
the base sample time for the generated code, in seconds (s), and is used to
discretize the physical model equations (see “Physical Model Discretization”
on page 35) and continuous state variables of control blocks.

Simulation mode
This parameter is enabled only if code generation is enabled. When this pa-
rameter is set to Normal, which is the default, the subsystem is simulated
like a normal atomic subsystem. When the parameter is set to CodeGen,
the generated code is compiled and linked to PLECS to be executed instead
of the subsystem during a simulation.

In connection with the “Traces” feature of the scopes (see “Adding Traces”
on page 104), this allows you to easily verify the fidelity of the generated
code against a normal simulation.

Parameters You can create a dialog box for your Subsystem by masking the block (see
“Mask Parameters” on page 76 for more details).
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Sum

Purpose Add and subtract input signals

Library Control / Math

Description The Sum block adds or subtracts input signals, which may be scalars or vectors
of the same size.

If the block has multiple inputs, it performs an element-wise summation or
subtraction of the input signals. Scalar inputs are expanded to the necessary
width.

If the block has a single input, it calculates the positive or negative sum of the
elements of the input signal. In this case the sign displayed on the block icon
changes to Σ or −Σ.

Parameters Icon shape
Specifies whether the block is drawn with a round or a rectangular shape.
Round shape icons permit a maximum of three inputs.

List of operators or number of inputs
The inputs can be specified either with a string containing + or - for each
input and | for spacers, or a positive integer declaring the number of inputs.

Output data type
The data type of the output signal. See “Data Types” (on page 43). If you
choose inherited, the minimum data type is int8_t.

Data type overflow handling
Specifies how a data type overflow is handled. See “Data Types” (on page
43). This parameter only appears if Output data type is not set to a
floating-point data type.

Probe Signals Input i
The ith input signal.

Output
The block output signal.
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Switch

Purpose On-off switch

Library Electrical / Switches

Description This Switch provides an ideal short or open circuit between its two electrical
terminals. The switch is open when the input signal is zero, otherwise closed.

Parameter Initial conductivity
Initial conduction state of the switch. The switch is initially open if the pa-
rameter evaluates to zero, otherwise closed. This parameter may either be a
scalar or a vector corresponding to the implicit width of the component. The
default value is 0.

Probe Signal Switch conductivity
Conduction state of the switch. The signal outputs 0 if the switch is open,
and 1 if it is closed.
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Switch Loss Calculator

Purpose Calculate the average sum of the switch losses of all probed components over
the specified averaging period

Library System

Description This block provides a shortcut for calculating the summed average switch losses
of one or more switch components. You can choose to calculate the conduction
losses, the switching losses (optionally separated into turn-on losses and turn-
off losses) and the total losses (comprising the conduction and switching losses).
The output signal is a vector comprising the selected loss types.

Optionally, you may group the losses by switch type, i.e. calculate individual
sums for the separate switch types by checking the box Group by switch
type. If, for example, the list of components contains a number of diodes and
MOSFETs and you have chosen to calculate conduction and switching losses,
the output vector will be ordered as follows:

• Sum of diode conduction losses
• Sum of diode switching losses
• Sum of MOSFET conduction losses
• Sum of MOSFET switching losses

To add switch components to the list of components, select them in the
schematic editor and drag them onto the list or the Switch Loss Calculator
block. The block accepts all switch components that implement the thermal loss
model (see “Supported Devices” on page 136).

When you drag a subsystem, masked or unmasked, onto the list of components
or the Switch Loss Calculator block, PLECS descends into the subsystem and
adds all supported switch components that the subsystem contains.
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Switch Loss Calculator

Operating Principle

The internal calculations of the Switch Loss Calculator are illustrated by the
equivalent schematic below. The example uses two switch components, for
which all loss signal types are calculated.

Periodic
Average

Probe

Switch	1

1

+−

Periodic	
Impulse	Average

Probe

Switch	2 Output

Conduction	loss

Switching	loss

Conductivity Turn-on	loss

Turn-off	loss

Total	loss

Parameter Averaging time
A scalar specifying the period or a two-element vector specifying the period
and offset of the averaging interval, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).
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Switched Reluctance Machine

Purpose Detailed model of switched reluctance machine with open windings

Library Electrical / Machines

Description These components represent analytical models of three common switched reluc-
tance machine types: three-phase 6/4 SRM, four-phase 8/6 SRM and five-phase
10/8 SRM.

The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed, the machine is operating in motor mode, oth-
erwise in generator mode. In the component icon, the positive terminals of the
stator windings are marked with a dot.

Note The Switched Reluctance Machine models can only be simulated with
the Continuous State-Space Method.

The machine flux linkage is modeled as a non-linear function of the stator cur-
rent and rotor angle Ψ(i, θ) accounting for both the magnetization characteristic
of the iron and the variable air gap.

∂Ψ/∂i = L
a

∂Ψ/∂i = L
sat

∂Ψ/∂i = L
u

i

Ψ

Ψ
sat
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Switched Reluctance Machine

In the unaligned rotor position the flux linkage is approximated as a linear
function:

Ψu(i) = Lu · i

In the aligned rotor position the flux linkage is a non-linear function of the sta-
tor current:

Ψa(i) = Ψsat ·
(
1− e−K·i)+ Lsat · i

where

K =
La − Lsat

Ψsat

For intermediate rotor positions the flux linkage is written as a weighted sum
of these two extremes

Ψ(i, θ) = Ψu(i) + f(θ) · (Ψa(i)−Ψu(i))

using the weighting function

f(θ) =
1

2
+

1

2
cos

(
Nr

[
θ + 2π · x

Ns

])
where Nr is the number of rotor poles, Ns is the number of stator poles, and x =
0 . . . (Ns/2− 1) is the index of the stator phase.

Electrical System

∂Ψ/∂iR ∂Ψ/∂θ ∙ ω

+

−

v

i

The terminal voltage of a stator phase is determined by the equation

v = R · i+ dΨ

dt
= R · i+ ∂Ψ

∂i
· di
dt

+
∂Ψ

∂θ
· dθ
dt

The electromagnetic torque produced by one phase is the derivative of the coen-
ergy with respect to the rotor angle:

T (i, θ) =
∂

∂θ

ˆ i

0

Ψ(i′, θ)di′
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The total torque Te of the machine is given by the sum of the individual phase
torques.

Mechanical System

Rotor speed:

d

dt
ω =

1

J
(Te − Fω − Tm)

Rotor angle:

d

dt
θ = ω

Parameters Stator resistance
Stator resistance R in ohms (Ω).

Unaligned stator inductance
Stator inductance Lu in the unaligned rotor position, in henries (H).

Initial aligned stator inductance
Initial stator inductance La in the aligned rotor position, in henries (H).

Saturated aligned stator inductance
Saturated stator inductance Lsat in the aligned rotor position, in henries
(H).

Aligned saturation flux linkage
Flux linkage Ψsat at which the stator saturates in the aligned position, in
(Vs).

Inertia
Combined rotor and load inertia J in (Nms2).

Friction coefficient
Viscous friction F in (Nms).

Initial rotor speed
Initial mechanical speed ωm,0 in radians per second

(
rad
s

)
.

Initial rotor angle
Initial mechanical rotor angle θm,0 in radians.

Initial stator currents
A three-element vector containing the initial stator currents ia,0, ib,0 and ic,0
of phases a, b and c in amperes (A).
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Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in amperes (A). Cur-
rents flowing into the machine are considered positive.

Back EMF
The back EMF voltages ea, eb, ec in volts (V).

Stator flux linkage
The flux linkages in the individual phases of the machine in (Vs).

Rotational speed
The rotational speed ωm of the rotor in radians per second

(
rad
s

)
.

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in (Nm).

References
D.A. Torrey, J.A. Lang, “Modelling a nonlinear variable-reluctance motor

drive”, IEE Proceedings, Vol. 137, Pt. B, No. 5, Sept. 1990.

D.A. Torrey, X.-M. Niu, E.J. Unkauf, “Analytical modelling of variable-
reluctance machine magnetisation characteristic”, IEE Proceedings Elec-
tric Power Applications, Vol. 142, No. 1, Jan. 1995.
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Symmetrical PWM

Purpose Generate PWM signal using symmetrical triangular carrier

Library Control / Modulators

Description 2-level PWM generator with a symmetrical triangular carrier. The input m is
the modulation index, and the output s is the switching function. If the modula-
tion index is a vector, the switching function is also a vector of the same width.
The block can be used to control the IGBT Converter (see page 494) or the ideal
Converter (see page 479). In these cases the modulation index must have a
width of 3 according to the number of inverter legs.
The block offers different sampling methods for the modulation index. The next
three figures illustrate Natural Sampling with carrier starting at minimum,
center or maximum.
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The next two figures illustrate Regular Sampling with single update, where the
modulation index is updated only at minimum or the maximum of the carrier.
In the last figure, Regular Sampling with double update is illustrated, i.e. the
modulation index is updated at both tips of the triangular carrier.
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Parameters Sampling
Select a sampling method. If you select Natural Sampling, the carrier signal
may begin at mininum, center, or maximum at simulation start. The Regu-
lar Sampling method lets you choose among single update at either min or
max, and double update at both min and max.

Carrier frequency
The frequency f of the triangular carrier signal, in hertz (Hz).

Carrier phase shift
The time offset of the carrier signal, in per unit (p.u.) of the carrier period.

Carrier limits
The range of the triangular carrier. The default is [-1 1].

Output values
Values of the switching function in off-state and on-state. The default is [-
1 1].
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Symmetrical PWM (3-Level)

Purpose Generate 3-level PWM signal using symmetrical triangular carriers

Library Control / Modulators

Description 3-level PWM generator with two symmetrical triangular carriers. The input m
is the modulation index. The switching function s outputs either 1, 0 or −1. If
the modulation index is a vector, the switching function is also a vector of the
same width.

The block can be used to control the 3-Level IGBT Converter (see page 484) or
the ideal 3-Level Converter (see page 478). In these cases the modulation index
must have a width of 3 according to the number of inverter legs.

The figures below illustrate the Natural Sampling method. In the left figure,
the negative carrier signal is obtained by flipping the positive carrier verti-
cally around the time axis. In the right figure, the positive carrier is verti-
cally shifted to construct the negative carrier. The latter technique reduces the
switching frequency and hence the semiconductor stress in three-phase convert-
ers.
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The figures below illustrate the different Regular Sampling methods offered
by this block. With double edge sampling (left figure) the modulation index is
updated at the carrier tips and zero-crossings. With single edge sampling (right
figure) the modulation index is updated only at the outer tips.
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Parameters Sampling
Select a sampling method. If you select Natural Sampling, the carrier signal
may begin with 0 or 1 at simulation start. The Regular Sampling method
lets you choose between double edge and single edge sampling.

Carrier frequency
The frequency f of the triangular carrier signals, in hertz (Hz).

Carrier phase shift
The time offset of the carrier signal, in per unit (p.u.) of the carrier period.

Carrier limits
The range of the triangular carriers. The default is [-1 1].

Negative carrier
Select the phase shift between the negative and positive carrier signals. The
negative carrier may be constructed from the positive carrier either by flip-
ping or shifting.
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Synchronous Machine (Round Rotor)

Purpose Smooth air-gap synchronous machine with main-flux saturation

Library Electrical / Machines

Description This synchronous machine has one damper winding on the direct axis and two
damper windings on the quadrature axis of the rotor. Main flux saturation is
modeled by means of a continuous function.

The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed, the machine is operating in motor mode, oth-
erwise in generator mode. All electrical variables and parameters are viewed
from the stator side. In the component icon, phase a of the stator winding and
the positive pole of the field winding are marked with a dot.

In order to inspect the implementation, please select the component in your cir-
cuit and choose Look under mask from the Subsystem submenu of the Edit
menu. If you want to make changes, you must first choose Break library link
and then Unprotect, both from the same menu.

Electrical System

Stator flux linkages:

Ψd = Lls id + Lm,d

(
id + i′f + i′k,d

)
Ψq = Lls iq + Lm,q

(
iq + i′g + i′k,q

)
The machine model offers two different implementations of the electrical sys-
tem: a traditional rotor reference frame and a voltage behind reactance formu-
lation.

Rotor Reference Frame Using Park’s transformation, the 3-phase circuit
equations in physical variables are transformed to the dq rotor reference frame.
This results in constant coefficients in the stator and rotor equations making
the model numerically efficient. However, interfacing the dq model with the ex-
ternal 3-phase network may be difficult. Since the coordinate transformations
are based on voltage-controlled current sources, inductors and naturally com-
mutated devices such as diode rectifiers may not be directly connected to the
stator terminals. In these cases, fictitious RC snubbers are required to create
the necessary voltages across the terminals.
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Rs Lls

Lm,d

p∙ωm∙ Ψq
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−
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−
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R'k,d i'k,d
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Rs Lls

Lm,q

p∙ωm∙ Ψq

+

−

vq

iq

L'lk,q2 R'k,q2

i'k,q2

L'lk,q1
R'k,q1 i'k,q1

q-axis

Voltage Behind Reactance This formulation allows for direct interfacing of
arbitrary external networks with the 3-phase stator terminals. The rotor dy-
namics are expressed using explicit state-variable equations while the stator
branch equations are described in circuit form. However, due to the resulting
time-varying inductance matrices, this implementation is numerically less effi-
cient than the traditional rotor reference frame.

In both implementations, the value of the main flux inductance Lm is not con-
stant but depends on the main flux linkage Ψm as illustrated in the Ψm/im di-
agram. For flux linkages Ψm far below the transition flux ΨT, the relationship
between flux and current is almost linear and determined by the unsaturated
magnetizing inductance Lm,0. For large flux linkages the relationship is gov-
erned by the saturated magnetizing inductance Lm,sat. ΨT defines the knee of
the transition between unsaturated and saturated main flux inductance. The
tightness of the transition is defined with the form factor fT. If you do not have
detailed information about the saturation characteristic of your machine, fT = 1
is a good starting value. The function

plsaturation(Lm0,Lmsat,PsiT,fT)
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plots the main flux vs. current curve and the magnetizing inductance vs. cur-
rent curve for the parameters specified.

∂Ψ/∂i = L
m,0

∂Ψ/∂i = L
m,sat
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Ψ
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Ψ
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The model accounts for steady-state cross-saturation, i.e. the steady-state mag-
netizing inductances along the d-axis and q-axis are functions of the currents
in both axes. For rotating reference frame formulation, the stator currents, the
field current and the main flux linkage are chosen as state variables. With this
choice of state variables, the representation of dynamic cross-saturation could
be neglected without affecting the performance of the machine. The computa-
tion of the time derivative of the main flux inductance was not required.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (iq Ψd − id Ψq)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

θ̇m = ωm
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Parameters Most parameters for the Salient Pole Synchronous Machine (see page 716) are
also applicable to this round rotor machine. The following parameters are dif-
ferent:

Unsaturated magnetizing inductance
The unsaturated magnetizing inductance Lm,0. The value in henries (H) is
referred to the stator side.

Saturated magnetizing inductance
The saturated magnetizing inductance Lm,sat, in henries (H). If no satura-
tion is to be modeled, set Lm,sat = Lm,0.

Damper resistance
A three-element vector containing the damper winding resistance R′

k,d,
R′

k,q1 and R′
k,q2 of the d-axis and the q-axis. The values in ohms (Ω) are re-

ferred to the stator side.

Damper leakage inductance
A three-element vector containing the damper winding leakage inductance
L′
lk,d, L′

lk,q1 and L′
lk,q2 of the d-axis and the q-axis. The values in henries (H)

are referred to the stator side.

Initial field/damper current
A two-element vector containing the initial currents if,0 in the field winding
and i′k,q1,0 in one of the damper windings in amperes (A). The current in the
damper winding is referred to the stator side.

Probe Signals Most probe signals for the Salient Pole Synchronous Machine (see page 716) are
also available with this machine. Only the following probe signal is different:

Damper currents
The damper currents i′k,d, i′k,q1 and i′k,q2 in the stationary reference frame in
amperes (A), referred to the stator side.

References D. C. Aliprantis, O. Wasynczuk, C. D. Rodriguez Valdez, “A voltage-behind-
reactance synchronous machine model with saturation and arbitrary ro-
tor network representation”, IEEE Transactions on Energy Conversion,
Vol. 23, No. 2, June 2008.

K. A. Corzine, B. T. Kuhn, S. D. Sudhoff, H. J. Hegner, “An improved method
for incorporating magnetic saturation in the Q-D synchronous ma-
chine model”, IEEE Transactions on Energy Conversion, Vol. 13, No. 3,
Sept. 1998.

E. Levi, “Modelling of magnetic saturation in smooth air-gap synchronous
machines”, IEEE Transactions on Energy Conversion, Vol. 12, No. 2,
March 1997.
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E. Levi, “Impact of cross-saturation on accuracy of saturated synchronous ma-
chine models”, IEEE Transactions on Energy Conversion, Vol. 15, No. 2,
June 2000.
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Synchronous Machine (Salient Pole)

Purpose Salient pole synchronous machine with main-flux saturation

Library Electrical / Machines

Description This synchronous machine has one damper winding each on the direct and the
quadrature axis of the rotor. Main flux saturation is modeled by means of a con-
tinuous function.

The machine operates as a motor or generator; if the mechanical torque has the
same sign as the rotational speed, the machine is operating in motor mode, oth-
erwise in generator mode. All electrical variables and parameters are viewed
from the stator side. In the component icon, phase a of the stator winding and
the positive pole of the field winding are marked with a dot.

Electrical System

Rs Lls

Lm,d

p∙ωm∙ Ψq

+

−

vd +

−

v'f

id

L'lf
R'f

i'f

L'lk,d
R'k,d i'k,d

d-axis

Rs Lls

Lm,q

L'lk,q R'k,q
p∙ωm∙ Ψq
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−

vq

iq i'k,q

q-axis
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Synchronous Machine (Salient Pole)

Stator flux linkages:

Ψd = Lls id + Lm,d

(
id + i′f + i′k,d

)
Ψq = Lls iq + Lm,q

(
iq + i′k,q

)
The machine model offers two different implementations of the electrical sys-
tem: a traditional rotor reference frame and a voltage behind reactance formu-
lation.

Rotor Reference Frame Using Park’s transformation, the 3-phase circuit
equations in physical variables are transformed to the dq rotor reference frame.
This results in constant coefficients in the stator and rotor equations making
the model numerically efficient. However, interfacing the dq model with the ex-
ternal 3-phase network may be difficult. Since the coordinate transformations
are based on voltage-controlled current sources, inductors and naturally com-
mutated devices such as diode rectifiers may not be directly connected to the
stator terminals. In these cases, fictitious RC snubbers are required to create
the necessary voltages across the terminals.

Voltage Behind Reactance This formulation allows for direct interfacing of
arbitrary external networks with the 3-phase stator terminals. The rotor dy-
namics are expressed using explicit state-variable equations while the stator
branch equations are described in circuit form. However, due to the resulting
time-varying inductance matrices, this implementation is numerically less effi-
cient than the traditional rotor reference frame.

In both implementations, the value of the main flux inductances Lm,d and Lm,q

are not constant but depend on the main flux linkage Ψm as illustrated in the
Ψm/im diagram. In this machine model, the anisotropic factor

∂Ψ/∂i = L
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∂Ψ/∂i = L
m,sat
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m =
√
Lm,q,0/Lm,d,0 ≡

√
Lm,q/Lm,d = const.

is assumed to be constant at all saturation levels. The equivalent magnetizing
flux Ψm in an isotropic machine is defined as

Ψm =
√
Ψ2

m,d +Ψ2
m,q/m

2 .

For flux linkages Ψm far below the transition flux ΨT, the relationship between
flux and current is almost linear and determined by the unsaturated magnetiz-
ing inductance Lm,0. For large flux linkages the relationship is governed by the
saturated magnetizing inductance Lm,sat. ΨT defines the knee of the transition
between unsaturated and saturated main flux inductance. The tightness of the
transition is defined with the form factor fT. If you do not have detailed infor-
mation about the saturation characteristic of your machine, fT = 1 is a good
starting value. The function

plsaturation(Lm0,Lmsat,PsiT,fT)

plots the main flux vs. current curve and the magnetizing inductance vs. cur-
rent curve for the parameters specified.
The model accounts for steady-state cross-saturation, i.e. the steady-state mag-
netizing inductances along the d-axis and q-axis are functions of the currents
in both axes. For rotating reference frame formulation, the stator currents, the
field current and the main flux linkage are chosen as state variables. With this
choice of state variables, the representation of dynamic cross-saturation could
be neglected without affecting the performance of the machine. The computa-
tion of the time derivative of the main flux inductance was not required.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (iq Ψd − id Ψq)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

θ̇m = ωm
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Parameters Model
Implementation in the rotor reference frame or as a voltage behind reac-
tance.

Stator resistance
Armature or stator winding resistance Rs in ohms (Ω).

Stator leakage inductance
Armature or stator leakage inductance Lls in henries (H).

Unsaturated magnetizing inductance
A two-element vector containing the unsaturated stator magnetizing induc-
tance Lm,d,0 and Lm,q,0 of the d-axis and the q-axis. The values in henries
(H) are referred to the stator side.

Saturated magnetizing inductance
The saturated stator magnetizing inductance Lm,d,sat along the d-axis, in
henries (H). If no saturation is to be modeled, set Lm,d,sat = Lm,d,0.

Magnetizing flux at saturation transition
Transition flux linkage ΨT, in (Vs), defining the knee between unsaturated
and saturated main flux inductance.

Tightness of saturation transition
Form factor fT defining the tightness of the transition between unsaturated
and saturated main flux inductance. The default is 1.

Field resistance
d-axis field winding resistance R′

f in ohms (Ω), referred to the stator side.

Field leakage inductance
d-axis field winding leakage inductance L′

lf in henries (H), referred to the
stator side.

Damper resistance
A two-element vector containing the damper winding resistance R′

k,d and
R′

k,q of the d-axis and the q-axis. The values in ohms (Ω) are referred to the
stator side.

Damper leakage inductance
A two-element vector containing the damper winding leakage inductance
L′
lk,d and L′

lk,q of the d-axis and the q-axis. The values in henries (H) are
referred to the stator side.

Inertia
Combined rotor and load inertia J in (Nms2).

Friction coefficient
Viscous friction F in (Nms).
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Number of pole pairs
Number of pole pairs p.

Initial rotor speed
Initial mechanical speed ωm,0 in radians per second

(
rad
s

)
.

Initial rotor position
Initial mechanical rotor angle θm,0 in radians. If θm,0 is an integer multiple
of 2π/p, the d-axis is aligned with phase a of the stator windings at simula-
tion start.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A).

Initial field current
Initial current if,0 in the field winding in amperes (A).

Initial stator flux
A two-element vector containing the initial stator flux Ψ′

d,0 and Ψ′
q,0 in the

rotor reference frame in (Vs).

Probe Signals Stator phase currents
The three-phase stator winding currents ia, ib and ic, in amperes (A). Cur-
rents flowing into the machine are considered positive.

Field currents
The excitation current if in amperes (A).

Damper currents
The damper currents i′k,d and i′k,q in the stationary reference frame, in am-
peres (A).

Stator flux (dq)
The stator flux linkages Ψd and Ψq in the stationary reference frame in
(Vs).

Magnetizing flux (dq)
The magnetizing flux linkages Ψm,d and Ψm,q in the stationary reference
frame in (Vs).

Rotational speed
The rotational speed ωm of the rotor in radians per second

(
rad
s

)
.

Rotor position
The mechanical rotor angle θm in radians.

Electrical torque
The electrical torque Te of the machine in (Nm).
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References
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Synchronous Reluctance Machine

Purpose Synchronous reluctance machine configurable with lookup tables

Library Electrical / Machines

Description This three-phase synchronous reluctance machine has a solid rotor without per-
manent magnets. Saliency, saturation and cross-coupling are modeled by means
of corresponding inductance lookup tables.

Two sets of one-dimensional inductance tables must be provided, one for
each axis (d, q), where the first curve corresponds to the case with no cross-
saturation, and the second to the case with maximum cross-saturation.
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From this information, complete flux linkage and incremental inductance tables
are derived, using an interpolation method that ensures a conservative mag-
netic circuit.

The machine can operate as either a motor or generator. If the mechanical
torque has the same sign as the rotational speed, the machine is operating in
motor mode; otherwise it is in generator mode. In the component icon, phase a
is marked with a dot.
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Electrical System

The model utilizes the Non-Excited Synchronous Machine (see page 579) com-
ponent. Use this component directly to model permanent magnet-assisted syn-
chronous reluctance machines, or if more complete flux/inductance data is avail-
able. The electrical system is realized by means of the voltage behind reactance
(VBR) formulation and is therefore appropriate to simulate switching dead-time
and failure modes.

Electro-Mechanical System

Electromagnetic torque:

Te =
3

2
p (φd iq − φq id)

Mechanical System

Mechanical rotor speed ωm:

ω̇m =
1

J
(Te − Fωm − Tm)

θ̇m = ωm

Parameters
General

Stator resistance
Armature or stator resistance Rs in Ω.

Stator leakage inductance
Leakage inductance of stator windings in henries (H). Stator leakage must
be set to a non-zero value.

Number of pole pairs
Number of pole pairs p.

Initial stator currents
A two-element vector containing the initial stator currents ia,0 and ib,0 of
phase a and b in amperes (A). ic,0 is calculated assuming a neutral connec-
tion.
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Magnetizing Inductance

Current lookup vector
d- and q-axis peak current vector serving as input to inductance lookup vec-
tors. Must be a one dimensional vector with 3 or more elements, and mono-
tonically increasing, i.e. [0 . . . id,max] and [0 . . . iq,max]. The values are in am-
peres (A).

Ld (iq = 0) lookup vector
d-axis inductance when there is no cross saturation (iq = 0). Must be the
same size as the Current lookup vector. The values are in henries (H).

Ld (iq = max) lookup vector
d-axis inductance when there is maximum cross saturation (iq = iq,max).
If no cross-saturated data is available, this can be left empty. Must be the
same size as the Current lookup vector. The values are in henries (H).

Lq (id = 0) lookup vector
q-axis inductance in when there is no cross saturation (id = 0). Must be the
same size as the Current lookup vector. The values are in henries (H).

Lq (id = max) lookup vector
q-axis inductance when there is maximum cross saturation (id = id,max).
If no cross-saturated data is available, this can be left empty. Must be the
same size as the Current lookup vector. The values are in henries (H).

Generated table size
User-specified dimension to derive lookup tables for flux linkages and incre-
mental inductances to be used in the underlying Non-Excited Synchronous
Machine (see page 579) component.

If left empty, the specified data is used as-is.

Specifying a scalar value, n, will generate equally spaced, n-element d- and
q-axis current vectors. The corresponding 2D lookup tables for flux linkage
and incremental inductance are also generated. The dimensions of the gen-
erated tables must be 3 or more.

The size of the generated tables affect the model initialization and simu-
lation speeds. A smaller size leads to faster model initialization and sim-
ulation speeds, but lower resolution in the generated tables. A larger size
increases the resolution but adversely affects the model initialization and
simulation speeds. Care must be taken when configuring this parameter.
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Synchronous Reluctance Machine

Current out of range
Configure to ignore, warn, warn and pause simulation, or generate error
and stop simulation if the d- or q-axis currents are outside the specified
range.

Co-energy plausibility check
The change in co-energy (∆W) between zero and maximum cross satura-
tion is calculated for both the d-axis (∆Wd) and q-axis (∆Wq). Configure
to check if ∆Wd,q are within 5% or 10% of each other to validate the input
data. This check can be disabled.

Mechanical

Inertia
Combined rotor and load inertia J in (Nms2).

Friction coefficient
Viscous friction F in (Nms).

Initial rotor speed
Initial mechanical rotor speed ωm,0 in radians per second

(
rad
s

)
.

Initial rotor position
Initial mechanical rotor angle θm,0 in radians.

Probe Signals All probe signals for the Non-Excited Synchronous Machine (see page 579) are
also available with this machine.

References
A. Vagati, M. Pastorelli, F. Scapino, G. Franceschini, “Impact of cross satura-

tion in synchronous reluctance motors of the transverse-laminated type”,
IEEE Transactions on Industry Applications, Vol. 36, No. 4, Aug 2000.

A. Vagati, M. Pastorelli, G. Franceschini, “Effect of magnetic cross-coupling in
synchronous reluctance motors”, Article in PCIM conference proceedings,
June 1997.
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Task Frame

Purpose Associate the enclosed components with a task in a multi-tasking environment

Library System

Description The Task Frame is used to configure a model for execution in a multi-tasking
environment. To use a Task Frame, you must first configure a set of tasks on
the Scheduling tab of the Coder Options dialog (see “Scheduling” on page
288). Once you have done this, you can double click on the label to open the pa-
rameter dialog and choose the desired task from the list.

The execution of all components inside the frame will be scheduled in the se-
lected task. Multiple Task Frames can reference the same task; in this case all
components inside these frames will be scheduled in the same task.

If the frame contains a Subsystem (see page 695), the task will also be assigned
to the components in the sub-schematic; however, you can override this mecha-
nism by placing Task Frames in the sub-schematic.

To move a Task Frame, press the left mouse button on the label or on an edge
and drag the frame to the desired location. To change the size of a Task Frame,
select it, then drag one of the selection handles.
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Task Transition

Purpose Transfer data between tasks using a double buffer.

Library System

Description The Task Transition block is used to influence the execution of a model in a
multi-tasking environment (see “Task Transitions in Multi-Tasking Mode” on
page 289).

The following schematic shows a block in a fast task that receives an input from
a block in a slow task. If the sample time of the slow task is an integer multiple
of the sample time of the fast task, PLECS silently inserts a Delay that oper-
ates with the sample time of the slow task in order to ensure that the data is
exchanged in a deterministic manner. This introduces a maximum latency of
one sample period of the slow task.

Slow	task Fast	task

send recv

If you wish the block in the fast task to receive the data as soon as possible with
minimum (but non-deterministic) latency, you need to insert a Task Transition
block in front of the receiving block as shown below.

Slow	task Fast	task

send recv
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Thermal Capacitor

Purpose Thermal capacitance of piece of material

Library Thermal / Components

Description This component provides an ideal thermal capacitance between its two thermal
ports or between the thermal port and the thermal reference. See section “Con-
figuring PLECS” (on page 124) for information on how to change the graphical
representation of thermal capacitors.

Parameters Capacitance
The value of the capacitor, in (J/K). All finite positive and negative values
are accepted, including 0. The default is 1.

Initial temperature
The initial temperature difference between the thermal ports or between
the thermal port and thermal reference at simulation start, in degrees Cel-
sius (◦C). If left blank or if the value is nan, PLECS will initialize the value
based on a thermal “DC” analysis, see “Temperature Initialization” (on page
137).

Probe Signal Temperature
The temperature difference measured across the capacitance, in degrees
Celsius (◦C). A positive value is measured when the temperature at the ter-
minal marked with “+” is greater than the temperature at the unmarked
terminal.
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Thermal Chain

Purpose Thermal impedance implemented as RC chain

Library Thermal / Components

Description This component implements a thermal RC chain of variable length. Using the
elements of the vectors provided in the component parameters Thermal resis-
tances and Thermal capacitances a subsystem is built as shown below. The
thermal capacitor C1 is connected to the terminal marked with a dot.

R1

C1 Cn

RnR2

C2
...

Parameters Thermal resistances
A vector containing the values of the thermal resistors R1 . . . Rn, in (K/W).

Thermal capacitances
A vector containing the values of the thermal capacitors C1 . . . Cn, in (J/K).

Initial temperature
A scalar value specifying the initial temperature of all thermal capacitors
at simulation start, in degrees Celsius (◦C). If left blank or if the value is
nan, PLECS will initialize the value based on a thermal “DC” analysis, see
“Temperature Initialization” (on page 137).
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Thermal Ground

Purpose Connect to common reference temperature

Library Thermal / Connectivity

Description The Thermal Ground implements a connection to the thermal reference.
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Thermal Model Settings

Purpose Configure settings for an individual thermal model.

Library Thermal / Model Settings

Description The Thermal Model Settings block lets you configure parameter settings that
influence the code generation for a particular thermal system, see also “Code
Generation for Physical Systems” (on page 279).

The block affects the thermal system that it is attached to by its terminal. At
most one Model Settings block may be attached to an individual state-space
system. All thermal models within an atomic subsystem are combined into a
single common state-space system.

Parameters Matrix coding style
This setting allows you to specify the format used for storing the state-space
matrices for a physical model. When set to sparse, only the non-zero ma-
trix entries and their row and column indices are stored. When set to full,
matrices are stored as full m × n arrays. When set to full (inlined), the
matrices are additionally embedded in helper functions, which may enable
the compiler to further optimize the matrix-vector-multiplications at the
cost of increased code size.
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Thermal Multiplexer

Purpose Combine several thermal connections into single vector

Library Thermal / Connectivity

Description This multiplexer combines several thermal connections into one vector connec-
tion. The individual connections may themselves be vectors. In the block icon,
the first individual connection is marked with a dot.

Parameter Width
This parameter allows you to specify the number and/or width of the indi-
vidual connections. You can choose between the following formats for this
parameter:

Scalar: A scalar specifies the number of individual connections each having
a width of 1.

Vector: The length of the vector determines the number of individual con-
nections. Each element specifies the width of the corresponding individual
connections.
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Thermal Package Impedance

Purpose Model thermal coupling in a semiconductor package

Library Thermal / Components

Description The Thermal Package Impedance is used in conjunction with a Thermal Pack-
age Description to model the thermal coupling between multiple semiconductor
devices and the case of a semiconductor module.

For additional information see section “Thermal Package Description” (on page
150).

Parameters Number of terminals
This parameter allows you to change the number of external thermal con-
nectors of the component.

Package impedance
This parameter defines the state-space model of the thermal network be-
tween the individual semiconductor devices and the case of a module.

Initial temperature
The initial temperature difference between the internal states of the
impedance and the thermal reference at simulation start, in degrees Cel-
sius (◦C). If left blank or if the value is nan, PLECS will initialize the value
based on a thermal “DC” analysis, see “Temperature Initialization” (on page
137).
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Thermal Port

Purpose Add thermal connector to subsystem

Library Thermal / Connectivity

Description Thermal ports are used to establish thermal connections between a schematic
and the subschematic of a subsystem (see page 695). If you copy a Thermal Port
block into the schematic of a subsystem, a terminal will be created on the sub-
system block. The name of the port block will appear as the terminal label. If
you choose to hide the block name by unselecting the show button in the dialog
box, the terminal label will also disappear.

Terminals can be moved around the edges of the subsystem by holding down
the Shift key or by using the middle mouse button.

Thermal Ports in a Top-Level Schematic

In PLECS Blockset, if a Thermal Port is placed in a top-level schematic, the
PLECS Circuit block in the Simulink model will show a corresponding ther-
mal terminal, which may be connected with other thermal terminals of the
same or a different PLECS Circuit block. The Thermal Port is also assigned a
unique physical port number. Together with the parameter Location on cir-
cuit block the port number determines the position of the thermal terminal of
the PLECS Circuit block.

For compatibility reasons you can also place an Thermal Port in a top-level
schematic in PLECS Standalone. However, since there is no parent system to
connect to, such a port will act like an isolated node.

Note Thermal Port blocks may not be used in schematics that contain Ambi-
ent Temperature blocks (see page 360).

Parameter Port number
If a Thermal Port is placed in a top-level schematic in PLECS Blockset, this
parameter determines the position, at which the corresponding terminal
appears on the PLECS Circuit block.
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Location on circuit block
If a Thermal Port is placed in a top-level schematic in PLECS Blockset, this
parameter specifies the side of the PLECS Circuit block on which the corre-
sponding terminal appears. By convention, left refers to the side on which
also input terminals are shown and right refers to the side on which also
output terminals are shown.
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Thermal Resistor

Purpose Thermal resistance of piece of material

Library Thermal / Components

Description This component provides an ideal one-dimensional thermal resistor between its
two thermal ports. See section “Configuring PLECS” (on page 124) for informa-
tion on how to change the graphical representation of thermal resistors.

Parameter Thermal resistance
The resistance in (K/W). All positive and negative values are accepted, in-
cluding 0 and inf (∞). The default is 1.
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Thermal Selector

Purpose Select or reorder elements from vector connection

Library Thermal / Connectivity

Description The Thermal Selector block connects the individual elements of the output con-
nection to the specified elements of the input connection. The input connection
is marked with a dot.

Parameters Input width
The width of the input connection.

Output indices
A vector with the indices of the input elements that the output connection
should contain.
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Thermometer

Purpose Output measured temperature as signal

Library Thermal / Meters

Description

K K

The Thermometer measures the temperature difference between its two ther-
mal ports or between the thermal port and thermal reference and provides it as
a signal at the output of the component. The output signal can be made acces-
sible in Simulink with a Output block (see page 674) or by dragging the compo-
nent into the dialog box of a Probe block.

Probe Signal Measured temperature
The measured temperature difference in degrees Celsius (◦C).
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Thyristor

Thyristor

Purpose Ideal thyristor (SCR) with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The Thyristor can conduct current only in one direction—like the diode. In ad-
dition to the diode it can be controlled by an external gate signal. The thyristor
is modeled by an ideal switch that closes when the voltage between anode and
cathode is positive and a non-zero gate signal is applied. The switch remains
closed until the current becomes negative. A thyristor cannot be switched off
via the gate.

Parameters The following parameters may either be scalars or vectors corresponding to the
implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
thyristor is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the thyristor. The thyristor is initially blocking if
the parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on page
131). If no thermal description is given, the losses are calculated based on
the voltage drop von = Vf +Ron · i.

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).
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Probe Signals Thyristor voltage
The voltage measured between anode and cathode.

Thyristor current
The current through the thyristor flowing from anode to cathode.

Thyristor gate signal
The gate input signal of the thyristor.

Thyristor conductivity
Conduction state of the internal switch. The signal outputs 0 when the
thyristor is blocking, and 1 when it is conducting.

Thyristor junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

Thyristor conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

Thyristor switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.
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Thyristor Rectifier/Inverter

Thyristor Rectifier/Inverter

Purpose 3-phase thyristor rectifier/inverter

Library Electrical / Converters

Description Implements a three-phase rectifier or inverter based on the Thyristor model
(see page 739). The gate input is a vector of six signals ordered according to the
natural sequence of commutation. This sequence corresponds to the numbering
of the thyristors in the electrical circuits below. The rectifier is shown on the
left side, the inverter on the right:

Thy2

a

b

c

Thy1

Thy4 Thy6

Thy3 Thy5 Thy6Thy4

Thy1

a

b

c

Thy2

Thy5Thy3

Parameters For a description of the parameters see the documentation of the Thyristor (on
page 739).

Probe Signals The thyristor converters provide six probe signals, each a vector containing the
appropriate quantities of the six individual thyristors: voltage, current, conduc-
tion loss and switching loss. The vector elements are ordered according to the
natural sequence of commutation.
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Thyristor with Reverse Recovery

Purpose Dynamic thyristor (SCR) model with reverse recovery

Library Electrical / Power Semiconductors

Description This component is a behavioral model of a thyristor which reproduces the effect
of reverse recovery. The effect can be observed when a forward biased thyristor
is rapidly turned off. It takes some time until the excess charge stored in the
thyristor during conduction is removed. During this time the thyristor repre-
sents a short circuit instead of an open circuit, and a negative current can flow
through the thyristor. The thyristor finally turns off when the charge is swept
out by the reverse current and lost by internal recombination. The same effect
is modeled in the Diode with Reverse Recovery (see page 413) and described
there in detail.

Note

• Due to the small time-constant introduced by the turn-off transient a stiff
solver is recommended for this device model.

• If multiple thyristors are connected in series, the off-resistance may not be
infinite.

Parameters Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
thyristor is conducting. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Off-resistance
The resistance Roff of the blocking device, in ohms (Ω). The default is 1e6.
This parameter may be set to inf unless multiple thyristors are connected
in series.

Continuous forward current
The continuous forward current If0 in amperes (A) under test conditions.

Current slope at turn-off
The turn-off current slope dIr/dt in

(
A
s

)
under test conditions.
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Thyristor with Reverse Recovery

Reverse recovery time
The turn-off time trr in seconds (s) under test conditions.

Peak recovery current
The absolute peak value of the reverse current Irrm in amperes (A) under
test conditions.

Reverse recovery charge
The reverse recovery charge Qrr in coulombs (C) under test conditions. If
both trr and Irrm are specified, this parameter is ignored.

Lrr
This inductance acts as a probe measuring the di/dt. It should be set to a
very small value, in henries (H). The default is 10e-10.

Probe Signals Thyristor voltage
The voltage measured between anode and cathode.

Thyristor current
The current through the thyristor flowing from anode to cathode.

Thyristor conductivity
Conduction state of the internal switch. The signal outputs 0 when the
thyristor is blocking, and 1 when it is conducting.

References
A. Courtay, "MAST power diode and thyristor models including automatic pa-

rameter extraction", SABER User Group Meeting Brighton, UK, Sept.
1995.
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To File

Purpose Write time stamps and signal values to a file.

Library System

Description While a simulation is running, the To File block writes the time stamps and the
values of its input signals to a file. The file format can be either a text file with
comma separated values (csv) or a MATLAB data file (mat). CSV files can be
imported by all common spreadsheet tools like Microsoft Excel.

In a csv file a new row is appended for each time step. When writing to a MAT-
LAB file the resulting data contains a column for each time step.

The first value for each data record is the simulation time of the current simu-
lation step. The value is followed by the signal values of the input signal.

Parameters Filename
The name of the data file to write to. Files will be stored relative to the
model directory unless an absolute file path is given. The data file will be
created if it doesn’t exist. An existing file of the same name will be overwrit-
ten.

If you choose the option literal, the string that you enter is taken literally
as the basename of the data file. So, if you enter e.g. MyFile, the file name
will be MyFile.csv or MyFile.mat.

If you choose the option evaluate, the string that you enter is inter-
preted as a MATLAB/Octave expression that must yield a string, which
in turn is taken as the basename of the data file. So, if you enter e.g.
[’MyFile’ num2str(index)] and the current workspace contains a variable
index with a value of 2, the file name will be MyFile2.csv or MyFile2.mat.

File type
The file format to use for the data file. The file can be written as a text file
with comma separated values (csv) or as a MATLAB data file (mat).

Write signal names
Controls whether the signal names are written to the file as the first row
before the data records. This parameter is shown only if the File type pa-
rameter is set to csv.

Sample time
A scalar specifying the sampling period or a two-element vector specifying
the sampling period and offset, in seconds (s). For positive values of the
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To File

sampling period, the input data will be written to the data file once in the
given simulation interval. If the sampling period is set to 0, the input data
is written to the data file in each simulation step. See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).
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Torque (Constant)

Purpose Generate constant torque

Library Mechanical / Rotational / Sources

Description The Constant Torque generates a constant torque between its two flanges. The
direction of a positive torque is indicated by the arrow.

Note A torque source may not be left unconnected or connected in series with
a spring or any other torque source.

Parameters Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Torque
The magnitude of the torque, in newton-meters (Nm). The default value is
1.

Probe Signals Torque
The generated torque, in newton-meters (Nm).

Speed
The speed of the flange that the arrow points to with respect to the other
flange, in

(
rad
s

)
.
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Torque (Controlled)

Torque (Controlled)

Purpose Generate variable torque

Library Mechanical / Rotational / Sources

Description The Controlled Torque generates a variable torque between its two flanges. The
direction of a positive torque is indicated by the arrow. The momentary torque
is determined by the signal fed into the input of the component.

Note A torque source may not be left unconnected or connected in series with
a spring or any other torque source.

Parameters Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of mechanical measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Torque
The generated torque, in newton-meters (Nm).

Speed
The speed of the flange that the arrow points to with respect to the other
flange, in

(
rad
s

)
.

747



15 Component Reference

Torque Sensor

Purpose Output measured torque as signal

Library Mechanical / Rotational / Sensors

Description The Torque Sensor measures the torque between its two flanges and provides
it as a signal at the output of the component. A torque flow from the unmarked
flange towards the flange marked with a dot is considered positive.

Note A torque sensor is ideally rigid. Hence, if multiple torque sensors are
connected in parallel, the torque measured by an individual sensor is unde-
fined. This produces a run-time error.

Parameter Second flange
Controls whether the second flange is accessible or connected to the rota-
tional reference frame.

Probe Signal Torque
The measured torque, in newton-meters (Nm).
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Torsion Spring

Torsion Spring

Purpose Ideal torsion spring

Library Mechanical / Rotational / Components

Description The Torsion Spring models an ideal linear spring in a rotational system de-
scribed with the following equations:

τ = −c ·∆θ

∆θ = θ − θ0
d

dt
θ = ω

where τ is the torque flow from the unmarked towards the marked flange, θ is
the angle of the marked flange with respect to the unmarked one, and θ0 is the
equilibrium flange displacement.

Note An torsion spring may not be connected in series with a torque source.
Doing so would create a dependency between an input variable (the source
torque) and a state variable (the spring torque) in the underlying state-space
equations.

Parameters Spring constant
The spring rate or stiffness c, in

(
Nm
rad

)
.

Equilibrium (unstretched) displacement
The displacement θ0 between the two flanges of the unloaded spring, in ra-
dians.

Initial deformation
The initial deformation (torsion) ∆θ0 of the spring, in radians.

Probe Signals Torque
The spring torque τ , in newton-meters (Nm).

Deformation
The spring deformation ∆θ, in radians.
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Total Harmonic Distortion

Purpose Calculate total harmonic distortion (THD) of input signal

Library Control / Filters

Description This block calculates the total harmonic distortion of a periodic input signal.
The sample time and the fundamental frequency can be specified. The THD is
defined as:

THD =

√√√√ ∑
ν≥2

U2
ν

U2
1

=

√
U2
rms − U2

0 − U2
1

U2
1

where Uν is the RMS value of the νth harmonic of the input signal and Urms is
its overall RMS value.

Parameters Sample time
A scalar specifying the sampling period or a two-element vector specify-
ing the sampling period and offset, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38). If a
sample time of 0 is specified, a continuous implementation based on the
Moving Average block (see page 571) is active. The Discrete-Periodic im-
plementation can potentially force a variable-step solver to take small inte-
gration steps. This may slow down the simulation. The default value of this
parameter is 0.

Fundamental frequency
The fundamental frequency of the periodic input signal in hertz (Hz).
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Transfer Function

Purpose Model linear time-invariant system as transfer function

Library Control / Continuous

Description The Transfer Function models a linear time-invariant system that is expressed
in the Laplace domain in terms of the argument s:

Y (s)

U(s)
=

nns
n + · · ·+ n1s+ n0

dnsn + · · ·+ d1s+ d0

The transfer function is displayed in the block if it is large enough, otherwise a
default text is shown. To resize the block, select it, then drag one of its selection
handles.

Parameters Numerator coefficients
A vector of the s term coefficients [nn . . . n1, n0] for the numerator, written in
descending order of powers of s. For example, the numerator s3 + 2s would
be entered as [1,0,2,0].
The output of the Transfer Function is vectorizable by entering a matrix for
the numerator.

Denominator coefficients
A vector of the s term coefficients [dn . . . d1, d0] for the denominator, written
in descending order of powers of s.

Note The order of the denominator (highest power of s) must be greater than
or equal to the order of the numerator.

Initial condition
The initial condition vector of the internal states of the Transfer Function in
the form [xn . . . x1, x0]. The initial conditions must be specified for the con-
troller normal form, depicted below for the the transfer function

Y (s)

U(s)
=

n2s
2 + n1s+ n0

d2s2 + d1s+ d0
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a1

a0

a2

b0

b1

b21/s

++

++1/s+−

++

x1 x0 Y(s)U(s)

where

bi = di
dn

for i < n

bn = 1
dn

ai = ni − nndi
dn

for i < n

an = nn

For the normalized transfer function (with nn = 0 and dn = 1) this simplifies
to bi = di and ai = ni.

Probe Signals Input
The input signal.

Output
The output signal.
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Transformation 3ph->RRF

Purpose Transform 3-phase signal to rotating reference frame

Library Control / Transformations

Description This block transforms a three-phase signal [xa xb xc] into a two-dimensional
vector [yd yq] in a rotating reference frame. The first input is the three-phase
signal. The second input is the rotation angle φ of the rotating reference frame.
φ is given in radians.

 yd

yq

 =
2

3


cosφ − sinφ

cos (φ− 120◦) − sin (φ− 120◦)

cos (φ+ 120◦) − sin (φ+ 120◦)


T

·


xa

xb

xc


Any zero-sequence component in the three-phase signals is discarded.
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Transformation 3ph->SRF

Purpose Transform 3-phase signal to stationary reference frame

Library Control / Transformations

Description This block transforms a three-phase signal [xa xb xc] into a two-dimensional
vector [yα yβ ] in the stationary reference frame:

 yα

yβ

 =


2

3
−1

3
−1

3

0
1√
3

− 1√
3

 ·


xa

xb

xc


Any zero-sequence component in the three-phase signals is discarded.
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Transformation RRF->3ph

Purpose Transform vector in rotating reference frame into 3-phase signal

Library Control / Transformations

Description This block transforms a two-dimensional vector [xd xq] in a rotating reference
frame into a three-phase signal [ya yb yc]. The first input of the block is the
vector [xd xq]. The second input is the rotation angle φ of the rotating reference
frame. φ is given in radians.


ya

yb

yc

 =


cosφ − sinφ

cos (φ− 120◦) − sin (φ− 120◦)

cos (φ+ 120◦) − sin (φ+ 120◦)

 ·

xd

xq



The resulting three-phase signal does not have any zero-sequence component.
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Transformation RRF->SRF

Purpose Transform vector from rotating to stationary reference frame

Library Control / Transformations

Description This block transforms a two-dimensional vector [xd xq] from a rotating refer-
ence frame into a vector [yα yβ ] in the stationary reference frame. The first in-
put of the block is the vector [xd xq]. The second input is the angle φ between
the rotating and the stationary frame. φ is given in radians.

 yα

yβ

 =

 cosφ − sinφ

sinφ cosφ

 ·

xd

xq


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Transformation SRF->3ph

Purpose Transform vector in stationary reference frame into 3-phase signal

Library Control / Transformations

Description This block transforms a two-dimensional vector [xα xβ ] in the stationary refer-
ence frame into a three-phase signal [ya yb yc].


ya

yb

yc

 =



1 0

−1

2

√
3

2

−1

2
−
√
3

2


·

xα

xβ



The resulting three-phase signal does not have any zero-sequence component.
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Transformation SRF->RRF

Purpose Transform vector from stationary to rotating reference frame

Library Control / Transformations

Description This block transforms a two-dimensional vector [xα xβ ] in the stationary refer-
ence frame into a vector [yd yq] in a rotating reference frame. The first input is
the vector [xα xβ ]. The second input is the angle φ between the rotating and the
stationary frame. φ is given in radians.

 yd

yq

 =

 cosφ sinφ

− sinφ cosφ

 ·

xα

xβ


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Transformers (3ph, 2 Windings)

Purpose 3-phase transformers in Yy, Yd, Yz, Dy, Dd and Dz connection

Library Electrical / Transformers

Description This group of components implements two-winding, three-phase transformers
with a three-leg or five-leg core. The transformer core is assumed symmetrical,
i.e. all phases have the same parameters. Depending on the chosen component
, the windings are wired in star (Y) or delta (D) connection on the primary side.
On the secondary side, the windings are either in star (y), delta (d) or zig-zag (z)
connection. Star and zig-zag windings have an accessible neutral point.

The phase angle difference between the primary and the secondary side can
be chosen. For Yy and Dd connections, the phase lag must be an integer mul-
tiple of 60 ◦. For Yd and Dy connections the phase lag must be an odd integer
multiple of 30 ◦. The phase lag of zig-zag windings can be chosen arbitrarily.
The windings of the secondary side are allocated to the transformer legs accord-
ing to the phase lag. Please note that the phase-to-phase voltage of delta wind-
ings is by a factor of 1/

√
3 lower than the voltage of star or delta windings if the

number of turns are equal.
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The core saturation characteristic of the transformer legs is piece-wise linear
and is modeled using the Saturable Inductor (see page 655). The magnetizing
current im and flux Ψm value pairs are referred to the primary side. To model
a transformer without saturation enter 1 as the magnetizing current values
and the desired magnetizing inductance Lm as the flux values. A stiff Simulink
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solver is recommended if the iron losses are not negligible, i.e. Rfe is not infi-
nite.

Parameters Leakage inductance
A two-element vector containing the leakage inductance of the primary side
L1 and the secondary side L2. The inductivity is given in henries (H).

Winding resistance
A two-element vector containing the resistance of the primary winding R1

and the secondary winding R2, in ohms (Ω).

No. of turns
A two-element vector containing the number of turns of the primary wind-
ing n1 and the secondary winding n2.

Magnetizing current values
A vector of positive current values in amperes (A) defining the piece-wise
linear saturation characteristic of the transformer legs. The current values
must be positive and strictly monotonic increasing. At least one value is re-
quired.

Magnetizing flux values
A vector of positive flux values in (Vs) defining the piece-wise linear satura-
tion characteristic. The flux values must be positive and strictly monotonic
increasing. The number of flux values must match the number of current
values.

Core loss resistance
An equivalent resistance Rfe representing the iron losses in the transformer
core. The value in ohms (Ω) is referred to the primary side.

No. of core legs
The number of legs of the transformer core. This value may either be 3 or
5. In a three phase transformer wit 3-legs the sum of the fluxes in the three
phases must add up to zero. This constraint is modeled with auxiliary wind-
ings on each core, which are connected in series. A 5-leg transformer on the
other hand is similar to three uncoupled single-phase transformers. There-
fore, the constraint does not apply and the auxiliary windings are deacti-
vated.

Phase lag of secondary side
The phase angle between the primary side and the secondary side, in de-
grees. Unless the secondary side is in zig-zag connection, the angle can only
be varied in steps of 60 ◦.
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Initial currents wdg. 1
A vector containing the initial currents on the primary side i1,a, i1,b and,
if the winding has a neutral point, i1,c. The currents are given in amperes
(A) and considered positive if flowing into the transformer. The default is
[0 0 0].

Initial currents wdg. 2
A vector containing the initial currents on the secondary side i2,a, i2,b and,
if the winding has a neutral point, i2,c. The currents are given in amperes
(A) and considered positive if flowing into the transformer. The default is
[0 0 0].
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Transformers (3ph, 3 Windings)

Purpose Three-phase transformers in Ydy and Ydz connection.

Library Electrical / Transformers

Description This group of components implements three-winding, three-phase transformers
with a three-leg or five-leg core. The transformer core is assumed symmetrical,
i.e. all phases have the same parameters. The primary winding is in star con-
nection with an accessible neutral point and the secondary winding is in delta
connection. Depending on the chosen component, the tertiary winding is wired
either in star (y) or zig-zag (z) connection.

The phase angle difference between the primary and the secondary side must
be an odd integer multiple of 30 ◦. If the tertiary winding is in star connection,
the phase lag against the primary side must be an integer multiple of 60 ◦. If it
is in zig-zag connection, the phase lag can be chosen arbitrarily. The windings
of the secondary and tertiary side are allocated to the transformer legs accord-
ing to the phase lags. Please note that the phase-to-phase voltage of delta wind-
ings is by a factor of 1/

√
3 lower than the voltage of star or delta windings if the

number of turns are equal.
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The core saturation characteristic of the transformer legs is piece-wise linear
and is modeled using the Saturable Inductor (see page 655). The magnetizing
current im and flux Ψm value pairs are referred to the primary side. To model
a transformer without saturation enter 1 as the magnetizing current values
and the desired magnetizing inductance Lm as the flux values. A stiff Simulink
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solver is recommended if the iron losses are not negligible, i.e. Rfe is not infi-
nite.

Parameters Leakage inductance
A three-element vector containing the leakage inductance of the primary
side L1, the secondary side L2 and the tertiary side L3. The inductivity is
given in henries (H).

Winding resistance
A three-element vector containing the resistance of the primary winding R1,
the secondary winding R2 and the tertiary winding R3, in ohms (Ω).

No. of turns
A three-element vector containing the number of turns of the primary wind-
ing n1, the secondary winding n2 and the tertiary winding n3.

Magnetizing current values
A vector of positive current values in amperes (A) defining the piece-wise
linear saturation characteristic of the transformer legs. The current values
must be positive and strictly monotonic increasing. At least one value is re-
quired.

Magnetizing flux values
A vector of positive flux values in (Vs) defining the piece-wise linear satura-
tion characteristic. The flux values must be positive and strictly monotonic
increasing. The number of flux values must match the number of current
values.

Core loss resistance
An equivalent resistance Rfe representing the iron losses in the transformer
core. The value in ohms (Ω) is referred to the primary side.

No. of core legs
The number of legs of the transformer core. This value may either be 3 or 5.
In a three phase transformer with 3-legs the sum of the fluxes in the three
phases must add up to zero. This constraint is modeled with auxiliary wind-
ings on each core, which are connected in series. A 5-leg transformer on the
other hand is similar to three uncoupled single-phase transformers. There-
fore, the constraint does not apply and the auxiliary windings are deacti-
vated.

Phase lag of secondary side
The phase angle between the primary side and the secondary side, in de-
grees. Unless the secondary side is in zig-zag connection, the angle can only
be varied in steps of 60 ◦.
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Initial currents wdg. 1
A vector containing the initial currents on the primary side i1,a, i1,b and,
if the winding has a neutral point, i1,c. The currents are given in amperes
(A) and considered positive if flowing into the transformer. The default is
[0 0 0].

Initial currents wdg. 2
A vector containing the initial currents on the secondary side i2,a and i2,b.
The currents are given in amperes (A) and considered positive if flowing
into the transformer. The default is [0 0 0].

Initial currents wdg. 3
A vector containing the initial currents on the tertiary side i3,a, i3,b and i3,c.
The currents are given in amperes (A) and considered positive if flowing
into the transformer. The default is [0 0 0].
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Translational Algebraic Component

Purpose Define an algebraic constraint in terms of force and speed

Library Mechanical / Translational / Components

Description The Translational Algebraic Component enforces an arbitrary algebraic con-
straint involving force and speed.

The output signal “v” measures the speed of the marked flange with respect to
the unmarked one. The output signal “F” measures the force flow from the un-
marked towards the marked flange. The two output signals must affect the in-
put signal “0” by means of a direct feedthrough path. The component ensures
that the input signal is zero at all times.

The direct feedthrough path defines a function f(v, F ), which in turn implicitly
determines the speed-force characteristic of the component through the con-
straint f(v, F ) = 0. For instance, the choice f(v, F ) := F + D · v causes the
Translational Algebraic Component to act as a Translational Damper (see page
769) with damping constant D.

The Translational Algebraic Component offers no direct way to specify an ini-
tial displacement. In case you need to do so, place a Translational Damper with
zero damping constant in parallel to the component and set the initial displace-
ment property thereof.

By way of illustration, the following schematic shows a possible implementation
of a translational damper with variable damping constant and prescribed initial
displacement:
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Note The Translational Algebraic Component creates an algebraic loop. See
section “Block Sorting” (on page 31) for more information on algebraic loops.

Probe Signals Component force
The force flow from the unmarked towards the marked flange.

Component speed
The speed of the marked flange with respect to the unmarked one.

Component power
The power consumed by the component.

766



Translational Backlash

Translational Backlash

Purpose Ideal translational backlash

Library Mechanical / Translational / Components

Description The Translational Backlash models an ideal symmetrical, two-sided Hard Stop
(see page 772) in a translational system, which restricts the relative displace-
ment of the two flanges between an upper and lower limit of ± b

2 . While the dis-
placement is within the limits, no force is transmitted. When the displacement
hits either limit, the flanges become rigidly connected until the transmitted
force reverses.

Parameters Total backlash
The total permitted displacement b between the flanges, in meters (m).

Initial displacement
The initial displacement of the flanges, in meters (m). May be specified in
order to provide proper initial conditions if absolute positions are measured
anywhere in the system. Otherwise, this parameter can be left blank.

Probe Signals Force
The transmitted force flowing from the unmarked to the marked flange, in
newtons (N).

Displacement
The displacement of the marked flange with respect to the unmarked
flange, in meters (m).

State
The internal state of the component: -1 in lower limit, 0 inside limits, +1 in
upper limit.
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Translational Clutch

Purpose Ideal translational clutch

Library Mechanical / Translational / Components

Description The Translational Clutch models an ideal clutch in a translational system.
When engaged, it makes an ideally rigid connection between the flanges; when
disengaged, it transmits zero force. The clutch engages when the input signal
becomes non-zero and disengages when the input signal becomes zero.

Parameters Initial state
The initial state (engaged/disengaged) of the clutch.

Initial displacement
The initial displacement of the flanges, in meters (m). May be specified in
order to provide proper initial conditions if absolute positions are measured
anywhere in the system. Otherwise, this parameter can be left blank.
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Translational Damper

Purpose Ideal viscous translational damper

Library Mechanical / Translational / Components

Description The Translational Damper models an ideal linear damper in a translational
system described with the following equations:

F = −D · v

where F is the force flow from the unmarked towards the marked flange and v
is the speed of the marked flange with respect to the unmarked one.

Parameters Damper constant
The damping (viscous friction) constant D, in

(
Ns
m

)
.

Initial displacement
The initial displacement of the flanges, in meters (m). May be specified in
order to provide proper initial conditions if absolute positions are measured
anywhere in the system. Otherwise, this parameter can be left blank.
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Translational Friction

Purpose Ideal translational stick/slip friction

Library Mechanical / Translational / Components

Description The Translational Friction models any combination of static, Coulomb and vis-
cous friction between two flanges in a translational system. While the compo-
nent is stuck, it exerts whatever force is necessary in order to maintain zero
relative speed between the flanges, up to the limit of the breakaway force Fbrk.
When the breakaway force is exceeded, the flanges begin sliding against each
other, and the component exerts a force that consists of the Coulomb friction
force FC and a speed-dependent viscous friction force cv · v.

The figure below shows the speed/force characteristic and the state chart of the
component. Note that the friction force is opposed to the movement, hence the
negative sign.

Sticking

Sliding
backward

Sliding
forward

F > Fbrk F < -Fbrk

v > 0 v < 0

Fbrk

v

-F

FC
cv⋅v

Parameters Breakaway friction force
The maximum magnitude of the stiction force Fbrk, in newtons (N). Must be
greater than or equal to zero.

Coulomb friction force
The magnitude of the (constant) Coulomb friction force FC, in newtons (N).
Must be greater than or equal to zero and less than or equal to the break-
away friction force.

Viscous friction coefficient
The proportionality coefficient cv that determines the speed dependent vis-
cous friction force, in

(
Ns
m

)
.
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Probe Signals Force
The transmitted force F flowing from the unmarked to the marked flange,
in newtons (N).

Speed
The speed v of the marked flange with respect to the unmarked flange, in(
m
s

)
.

State
The internal state of the component: -1 sliding backward, 0 stuck, +1 slid-
ing forward.
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Translational Hard Stop

Purpose Ideal translational hard stop

Library Mechanical / Translational / Components

Description The Translational Hard Stop models an ideal one- or two-sided hard stop in
a translational system, which restricts the relative displacement of the two
flanges between an upper and lower limit. While the displacement is within
the limits, no force is transmitted. When the displacement hits either limit, the
displacement is clamped at the limit and the flanges become rigidly connected
until the transmitted force reverses.

The figure below shows the displacement/force characteristic and the state
chart of the component.

Inside
limits

Lower
limit

Upper
limit

x < xmin

x := xmin x := xmax

x > xmax

F < 0 F > 0

F := 0
xmin xmax x

F

Parameters Upper limit
The maximum displacement xmax between the flanges, in meters (m). Set to
inf to disable this limit.

Lower limit
The minimum displacement xmin between the flanges, in meters (m). Set to
-inf to disable this limit.

Initial displacement
The initial displacement of the flanges, in meters (m).

Probe Signals Force
The transmitted force F flowing from the unmarked to the marked flange,
in newtons (N).
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Displacement
The displacement x of the marked flange with respect to the unmarked
flange, in meters (m).

State
The internal state of the component: -1 in lower limit, 0 inside limits, +1 in
upper limit.
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Translational Model Settings

Purpose Configure settings for an individual mechanical model.

Library Mechanical / Translational / Model Settings

Description The Translational Model Settings block lets you configure parameter settings
that influence the code generation for a particular mechanical system, see also
“Code Generation for Physical Systems” (on page 279).

The block affects the mechanical system that it is attached to by its transla-
tional terminal. At most one Model Settings block may be attached to an in-
dividual state-space system. A mechanical model can be split into multiple
state-space systems if the underlying model equations are fully decoupled. Note
that a rotational system and a translational system that are coupled e.g. with a
Rack and Pinion (see page 622) have coupled model equations. See also the op-
tions Enable state-space splitting and Display state-space splitting in the
“Simulation Parameters” (on page 111).

Parameters Switching algorithm
This parameter allows you two choose between two algorithms to determine
the clutch states in the generated code. See “Switching Algorithm” (on page
280) for details.

Matrix coding style
This setting allows you to specify the format used for storing the state-space
matrices for a physical model. When set to sparse, only the non-zero ma-
trix entries and their row and column indices are stored. When set to full,
matrices are stored as full m × n arrays. When set to full (inlined), the
matrices are additionally embedded in helper functions, which may enable
the compiler to further optimize the matrix-vector-multiplications at the
cost of increased code size.
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Translational Multiplexer

Purpose Combine several translational connections into single vector

Library Mechanical / Translational / Connectivity

Description This multiplexer combines several translational connections into one vector
connection. The individual connections may themselves be vectors. In the block
icon, the first individual connection is marked with a dot.

Parameter Width
This parameter allows you to specify the number and/or width of the indi-
vidual connections. You can choose between the following formats for this
parameter:

Scalar: A scalar specifies the number of individual connections each having
a width of 1.

Vector: The length of the vector determines the number of individual con-
nections. Each element specifies the width of the corresponding individual
connections.
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Translational Port

Purpose Add translational flange to subsystem

Library Mechanical / Translational / Components

Description Translational ports are used to establish translational mechanical connections
between a schematic and the subschematic of a subsystem (see page 695). If
you copy a Translational Port block into the schematic of a subsystem, a termi-
nal will be created on the subsystem block. The name of the port block will ap-
pear as the terminal label. If you choose to hide the block name by unselecting
the show name option in the block menu, the terminal label will also disappear.

Terminals can be moved around the edges of the subsystem by holding down
the Shift key while dragging the terminal with the left mouse button or by us-
ing the middle mouse button.

Translational Ports in a Top-Level Schematic

In PLECS Blockset, if a Translational Port is placed in a top-level schematic,
the PLECS Circuit block in the Simulink model will show a corresponding
translational terminal, which may be connected with other translational ter-
minals of the same or a different PLECS Circuit block. The Translational Port
is also assigned a unique physical port number. Together with the parameter
Location on circuit block the port number determines the position of the
translational terminal of the PLECS Circuit block.

For compatibility reasons you can also place an Translational Port in a top-level
schematic in PLECS Standalone. However, since there is no parent system to
connect to, such a port will act like an isolated node.

Parameter Port number
If a Translational Port is placed in a top-level schematic in PLECS Blockset,
this parameter determines the position, at which the corresponding termi-
nal appears on the PLECS Circuit block.

Location on circuit block
If a Translational Port is placed in a top-level schematic in PLECS Blockset,
this parameter specifies the side of the PLECS Circuit block on which the
corresponding terminal appears. By convention, left refers to the side on
which also input terminals are shown, and right refers to the side on which
also output terminals are shown.
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Translational Reference

Purpose Connect to common translational reference frame

Library Mechanical / Translational / Components

Description The Translational Reference implements a connection to the translational refer-
ence frame that has a fixed absolute position of zero.
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Translational Selector

Purpose Select or reorder elements from vector connection

Library Mechanical / Translational / Connectivity

Description The Translational Selector block connects the individual elements of the output
connection to the specified elements of the input connection. The input connec-
tion is marked with a dot.

Parameters Input width
The width of the input connection.

Output indices
A vector with the indices of the input elements that the output connection
should contain.
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Translational Speed (Constant)

Purpose Maintain constant translational speed

Library Mechanical / Translational / Sources

Description The Constant Translational Speed maintains a constant linear speed between
its two flanges regardless of the force required. The speed is considered positive
at the flange marked with a “+”.

Note A speed source may not be short-circuited or connected in parallel with
other speed sources, nor may a speed source directly drive a mass.

Parameters Second flange
Controls whether the second flange is accessible or connected to the transla-
tional reference frame.

Speed
The magnitude of the speed, in

(
m
s

)
. The default value is 1.

Probe Signals Force
The generated force flowing from the unmarked flange to the marked
flange, in newtons (N).

Speed
The speed, in

(
m
s

)
.
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Translational Speed (Controlled)

Purpose Maintain variable translational speed

Library Mechanical / Translational / Sources

Description The Controlled Translational Speed maintains a variable linear speed between
its two flanges regardless of the force required. The speed is considered positive
at the flange marked with a “+”. The momentary speed is determined by the
signal fed into the input of the component.

Note A speed source may not be short-circuited or connected in parallel with
other speed sources, nor may a speed source directly drive a mass.

Parameters Second flange
Controls whether the second flange is accessible or connected to the transla-
tional reference frame.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of mechanical measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Probe Signals Force
The generated force flowing from the unmarked flange to the marked
flange, in newtons (N).

Speed
The speed, in

(
m
s

)
.
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Translational Speed Sensor

Purpose Output measured linear speed as signal

Library Mechanical / Translational / Sensors

Description The Translational Speed Sensor measures the linear speed of the flange
marked with a dot with respect to the other flange.

Note Speed and position sensors are ideally compliant. Hence, if multiple
speed or position sensors are connected in series, the speed or position mea-
sured by an individual sensor is undefined. This produces a run-time error.

Parameter Second flange
Controls whether the second flange is accessible or connected to the transla-
tional reference frame.

Probe Signal Speed
The measured speed, in

(
m
s

)
.
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Translational Spring

Purpose Ideal translational spring

Library Mechanical / Translational / Components

Description The Translational Spring models an ideal linear spring in a translational sys-
tem described with the following equations:

F = −c ·∆x

∆x = x− x0

d

dt
x = v

where F is the force flow from the unmarked towards the marked flange, x is
the displacement of the marked flange with respect to the unmarked one, and
x0 is the equilibrium displacement.

Note An translational spring may not be connected in series with a force
source. Doing so would create a dependency between an input variable (the
source force) and a state variable (the spring force) in the underlying state-
space equations.

Parameters Spring constant
The spring rate or stiffness c, in

(
N
m

)
.

Equilibrium (unstretched) displacement
The displacement x0 between the two flanges of the unloaded spring, in me-
ters (m).

Initial deformation
The initial deformation ∆x0 of the spring, in meters (m).

Probe Signals Force
The spring force F , in newtons (N).

Deformation
The spring deformation ∆x, in meters (m).
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Transmission Line (3ph)

Purpose 3-phase transmission line

Library Electrical / Passive Components

Description This component implements a three-phase transmission line. A transmission
line is characterized by a uniform distribution of inductances, resistances and
neutral capacitances along the line. In multi-wire lines, there are also uni-
formly distributed mutual inductances and coupling capacitances.

The user has the choice between two different implementations: one with
series-connected pi sections of lumped elements and another one with dis-
tributed parameters based on traveling wave theory. A stiff solver is recom-
mended for simulating models containing this component.

Pi-Section Line

In many cases, the uniformly distributed parameters of a transmission line can
be approximated by a series of pi sections consisting of lumped inductors, ca-
pacitors and resistors. The figure below illustrates a single pi section exempli-
fied for a 2-phase line. Depending on the desired fidelity at higher frequencies,
the number of series-connected pi sections can be configured.
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Let l be the length of the line and n the number of pi sections representing the
line. The inductance L, the resistance R, the neutral capacitance CN as well
as the coupling capacitances Cij and mutual inductances Lij of the discrete el-
ements can then be calculated from their per-unit-length counterparts L′, R′,
C ′

N , C ′
ij and L′

ij using the following equations:

L =
l

n
L′, R =

l

n
R′, CN =

l

n
C ′

N
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Cij =
l

n
C ′

ij , Lij =
l

n
L′
ij

It is possible to specify the parameters for each phase individually in order to
model asymmetric lines. In this case, the parameters must be provided in vec-
tor format. Otherwise, the parameter can be a scalar assigning the same value
to all phases.

Distributed Parameter Line

The implementation of a distributed parameter line is based on the traveling
wave theory, which describes the time delay phenomenon. This approach is
numerically more efficient due to the absence of numerous state variables and
should be used in large models.

Modeling asymmetric lines is not supported, therefore all parameters need to
be scalar.

Single-Phase Lossless Line

L'dx L'dx

C'dx C'dx

... ...
L'dx L'dx

C'dx C'dx

Consider a lossless transmission line with inductance L′ and capacitance C ′

per unit length. At a certain point x along the total length d, the relation be-
tween the line voltage and current can be described with partial differential
equations:

− ∂e

∂x
= L′ · ∂i

∂t

− ∂i

∂x
= C ′ · ∂e

∂t

Since a wave entering the sending end “s” of the line must remain unchanged
when it arrives at the receiving end “r” (and vice versa), the following expres-
sion is derived:

is =
1

Z
· es(t)− Ish
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ir =
1

Z
· er(t)− Irh

where

Ish =
1

Z
· er(t− τ) + ir(t− τ)

Irh =
1

Z
· es(t− τ) + is(t− τ)

with surge impedance Z =
√

L′

C′ and travel time τ = d·
√
L′C ′. This model can be

represented by a two-port equivalent circuit, where the electrical conditions at
port “s” are transferred after a time delay τ to port “r” via the controlled current
source Irh.

i s i r

e s e rZ I sh I rh Z

+

-

+

-

Approximation of Series Resistance

i s R/4 length = 0.5*d length = 0.5*dR/2 R/4 i r

+

-

+

-

e re s

Since the shunt conductance is usually negligible, the series resistance is re-
sponsible for the major part of the power losses. Such series resistance can be
approximated by three lumped resistors, two of which with the value R

4 are
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placed at both ends of the line while one with the value R
2 is placed in the mid-

dle. R = R′ · d is the total series resistance of the line. After aggregation and
substitution, the original expression of the two equivalent current source be-
comes:

Ish =
1 + h

2
· ( 1

ZR
· er(t− τ) + h · ir(t− τ)) +

1− h

2
(
1

ZR
· es(t− τ) + h · is(t− τ))

Irh =
1 + h

2
· ( 1

ZR
· es(t− τ) + h · is(t− τ)) +

1− h

2
(
1

ZR
· er(t− τ) + h · ir(t− τ))

with ZR = Z + R
4 and h =

Z−R
4

Z+R
4

.

Three-Phase Line

L M'dx

... ...

... ...

... ...

... ...

... ...

... ...

+

+

+

-

+

+

+

-

e s,a

e s,b

e s,c

e r,a

e r,b

e r,c

R'dx L S'dx

C K'dx

C E'dx

i s,a

i s,b

i s,c

i r,a

i r,b

i r,c

The differential equations of a 3-phase system with vector variables e⃗ =
[ea, eb, ec]

T , i⃗ = [ia, ib, ic]
T can be expressed as:

− ∂e⃗

∂x
= L′ · ∂⃗i

∂t
+R′ · i⃗

− ∂⃗i

∂x
= C′ · ∂e⃗

∂t

Under the assumption of symmetrical phase parameters, the per unit length
inductance, capacitance and resistance can be written in matrix form:

L′ =


L′
S L′

M L′
M

L′
M L′

S L′
M

L′
M L′

M L′
S


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C′ =


C ′

E + 2 · C ′
K −C ′

K −C ′
K

−C ′
K C ′

E + 2 · C ′
K −C ′

K

−C ′
K −C ′

K C ′
E + 2 · C ′

K



R′ =


R′ 0 0

0 R′ 0

0 0 R′


The presence of off-diagonal elements (mutual inductance and coupling capac-
itance) in the matrix make it difficult to solve the equation system. However,
this can be overcome with the help of modal transformations. If the differential
equations are multiplied by a transformation matrix T on the left side

−(T · ∂e⃗
∂x

) = (T · L′ ·T−1) · (T · ∂⃗i
∂t

) + (T ·R′ ·T−1) · (T · i⃗)

−(T · ∂⃗i
∂x

) = (T · L′ ·T−1) · (T · ∂e⃗
∂t

)

with

T =


1 1 1

1 −2 1

1 1 −2


the off-diagonal elements of the inductance, capacitance and resistance matrix
can be eliminated:

L′
mod = T · L′ ·T−1 =


L′
u 0 0

0 L′
v 0

0 0 L′
w



C′
mod = T ·C′ ·T−1 =


C ′

u 0 0

0 C ′
v 0

0 0 C ′
w


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R′
mod = T ·R′ ·T−1 =


R′ 0 0

0 R′ 0

0 0 R′

 = R′

Thus the original system, in which the three phases are coupled, has been con-
verted to three decoupled systems in the modal domain (denoted as u, v, w).
They can be treated separately in the same way as the single-phase system.

The simulation output in the modal domain should be eventually transformed
back into the phase domain via the inverse of the matrix T′.
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Parameters Self inductance per unit length
The series self inductance L′

S per unit length. If the length l is specified in
meters (m), the unit of L′

S is henries per meter (H/m).
For a pi-section line, the self inductance can be specified individually per
phase by providing a 3-element vector of the form L′ = [L′

1 L′
2 L′

3].
Mutual inductance per unit length

The series mutual inductance L′
M per unit length. If the length l is specified

in meters (m), the unit of L′
M is henries per meter (H/m).

In a pi-section line, the mutual inductances M ′
ij between the i-th and j-th

phase can be specified individually by providing a 3-element vector M′ =
[M ′

12 M ′
13 M ′

23] containing the upper triangular coupling matrix.
Resistance per unit length

The series resistance R′ per unit length. If the length l is specified in meters
(m), the unit of R′ is ohms per meter (Ω/m).
For a pi-section line, the parameter can be a vector of the form R′ =
[R′

1 R′
2 R′

3].
Neutral capacitance per unit length

The line-to-neutral capacitance C ′
N per unit length. If the length l is speci-

fied in meters (m), the unit of C ′
N is farads per meter (F/m).

For a pi-section line, this parameter can be a vector of the form C ′
N =

[C ′
N1 C ′

N2 C ′
N1].

Coupling capacitance per unit length
The line-to-line capacitance C ′

C per unit length. If the length l is specified in
meters (m), the unit of C ′

C is farads per meter (F/m).
In a pi-section line, the coupling capacitance C ′

ij between the i-th and j-th
phase can be specified individually by providing a 3-element vector C′ =
[C ′

12 C ′
13 C ′

23] containing the upper triangular coupling matrix.
Length

The length l of the line. The unit of l must match the units L′
S, L′

M, R′, C ′
N

and C ′
C are based on.

Number of pi sections
Number of sections used to model the transmission line. The default is 3.
This parameter only affects the pi-section implementation.

Reference
H. Dommel: “Digital Computer Solution of Electromagnetic Transients in Sin-

gle and Multiple Networks”, IEEE Transactions on Power Apparatus and
Systems, Vol. PAS88, No. 4, April, 1969
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Transport Delay

Purpose Delay continuous input signal by fixed or variable time

Library Control / Delays

Description The Transport Delay outputs a signal that approximates a past value of the in-
put signal:

y(t) ≈ u(t− Td)

For this purpose, the Transport Delay continuously records the input signals in
an internal buffer. The output values are computed by looking up the samples
nearest to t − Td in the input buffer and performing a first order (linear) inter-
polation. The input signal can be a scalar or vector.

If the time delay is less than the previous simulation time step, the output sig-
nal is calculated by performing a linear extrapolation from the preceding two
samples. This is because the Transport Delay does not access the current input
to calculate the outputs in order to avoid algebraic loops if the block is used in a
feedback path (see Direct feedthrough and Algebraic loops in “Block Sort-
ing” on page 31). If extrapolation is undesirable, you need to ensure that the
maximum solver step size is less than or equal to the time delay.

Note The Transport Delay should not be used to delay non-smooth signals
such as rectangular or triangular signals because the solver is not guaranteed
to make a simulation step at the precise instants required to accurately repro-
duce the discontinuities in the delayed signal.

• To generate phase-shifted rectangular or triangular signals, use the Pulse
Generator (see page 620) or the Triangular Wave Generator (see page 794)
and set the Phase delay parameter appropriately.

• To delay arbitrary signals that only change at discrete instants, use the Pulse
Delay (see page 619).

Parameters Time delay source
Specifies whether the delay is determined by the Time delay parameter
(internal) or by an external input signal (external).

Time delay Td

Time by which the input signal is delayed.
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Maximum time delay
Specifies the maximum possible delay for the external delay input signal, in
seconds (s).

Initial output
Output value after simulation start before the input values appear at the
output.
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TRIAC

Purpose Ideal TRIAC with optional forward voltage and on-resistance

Library Electrical / Power Semiconductors

Description The TRIAC can conduct current in both directions. It is built using two anti-
parallel thyristors (see page 739) and controlled by an external gate signal. The
TRIAC is modeled by two ideal switches that close if the voltage is positive and
a non-zero gate signal is applied. The conducting switch remains closed until
the current passes through zero. A TRIAC cannot be switched off via the gate.

Parameters The following parameters may either be scalars or vectors corresponding to the
implicit width of the component:

Forward voltage
Additional dc voltage Vf in volts (V) when one of the thyristors is conduct-
ing. The default is 0.

On-resistance
The resistance Ron of the conducting device, in ohms (Ω). The default is 0.

Initial conductivity
Initial conduction state of the TRIAC. The TRIAC is initially blocking if the
parameter evaluates to zero, otherwise it is conducting.

Thermal description
Switching losses, conduction losses and thermal equivalent circuit of the
component. For more information see chapter “Thermal Modeling” (on page
131). If no thermal description is given, the losses are calculated based on
the voltage drop von = Vf +Ron · i.

Thermal interface resistance
The thermal resistance of the interface material between case and heat
sink, in (K/W). The default is 0.

Initial temperature
This parameter is used only if the device has an internal thermal
impedance and specifies the temperature of the thermal capacitance at the
junction at simulation start. The temperatures of the other thermal capaci-
tances are initialized based on a thermal “DC” analysis. If the parameter is
left blank, all temperatures are initialized from the external temperature.
See also “Temperature Initialization” (on page 137).
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Probe Signals TRIAC voltage
The voltage measured between the terminals.

TRIAC current
The current flowing through the device to the terminal with the gate.

TRIAC gate signal
The gate input signal of the device.

TRIAC conductivity
Conduction state of the internal switch. The signal outputs 0 when the
TRIAC is blocking, and 1 when it is conducting.

TRIAC junction temperature
Temperature of the first thermal capacitor in the equivalent Cauer network.

TRIAC conduction loss
Continuous thermal conduction losses in watts (W). Only defined if the
component is placed on a heat sink.

TRIAC switching loss
Instantaneous thermal switching losses in joules (J). Only defined if the
component is placed on a heat sink.
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Triangular Wave Generator

Purpose Generate periodic triangular or sawtooth waveform

Library Control / Sources

Description The Triangular Wave Generator produces a signal that periodically changes
between a minimum and a maximum value and vice versa in a linear way.

Parameters Minimum signal value
The minimum value of the signal.

Maximum signal value
The maximum value of the signal.

Frequency
The frequency of the signal in hertz (Hz).

Duty cycle
The ratio of the rising edge to the period length. The value must be in the
range [0, 1]. A value of 1 produces a sawtooth waveform with a perpendicu-
lar falling edge. A value of 0 produces a reverse sawtooth waveform with a
perpendicular rising edge. A value of 0.5 produces a symmetrical triangular
wave.

Phase delay
The phase delay of the triangular wave in seconds (s). If the phase is set to
0, the waveform begins at the rising edge.

Probe Signal Output
The block output signal.
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Trigonometric Function

Purpose Apply specified trigonometric function

Library Control / Math

Description The Trigonometric Function calculates the specified function using the input
signal as argument. The atan2 function calculates the principal value of the arc
tangent of y/x. The quadrant of the return value is determined by the signs of x
and y. The y input is marked with a small black dot.

Parameters Function
Chooses which trigonometric function is calculated. Available functions are
sin, cos, tan, asin, acos, atan and atan2.

Unit
Specifies the unit of the input signal (for sin, cos and tan) or output sig-
nal (for asin, acos and atan). The unit can be radians [0 . . . 2π] or degress
[0 . . . 360].

Probe Signals Input
The block input signal.

Output
The block output signal.
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Triple Switch

Purpose Changeover switch with three positions

Library Electrical / Switches

Description This changeover switch provides an ideal short or open circuit. The switch po-
sition drawn in the icon applies if the input signal is zero. For values greater
than zero the switch is the lower position. For values less than zero it is in the
upper position.

Parameter Initial position
Initial position of the switch. The switch is initially in the middle position if
the parameter evaluates to zero. For values greater than zero it is in the
lower position, for values less than zero it is in the upper position. This
parameter may either be a scalar or a vector corresponding to the implicit
width of the component. The default value is 0.

Probe Signal Switch position
State of the internal switches. The signal outputs 0 if the switch is in the
middle position, 1 if it is in the lower position and −1 if it is in the upper
position.
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Trigger

Purpose Control execution of an atomic subsystem

Library System

Description The Trigger block is used in an atomic subsystem (see “Virtual and Atomic Sub-
systems” on page 695) to create a triggered subsystem. When you copy a Trig-
ger block into the schematic of a subsystem, a corresponding trigger terminal
will be created on the Subsystem block. In order to move this terminal around
the edges of the Subsystem block, hold down the Shift key while dragging the
terminal with the left mouse button or use the middle mouse button.

A triggered subsystem is executed when the trigger signal changes in the man-
ner specified by the Trigger type parameter:

rising
The subsystem is executed when the trigger signal changes from 0 to a non-
zero value.

falling
The subsystem is executed when the trigger signal changes from a non-zero
value to 0.

either
The subsystem is executed when the trigger signal changes from 0 to a non-
zero value or vice versa.

The trigger signal may be a vector signal. In this case the triggered subsystem
is executed when any trigger signal changes in the specified manner.

If the sample time of the Subsystem block is not inherited, the trigger signal
will be evaluated only at the instants specified by the sample time parameter.

Note A triggered subsystem can only contain components that have an in-
herited or constant sample time. In particular, it cannot contain any physical
components.

Parameters Width
The width of the trigger signal. The default auto means that the width is
inherited from connected blocks.
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Trigger type
The direction of the edges of the trigger signal upon which the subsystem is
executed, as described above.

Show output port
When this parameter is set to on, the Trigger block shows an output termi-
nal with the same width as the trigger signal. The output signal will be 1
when the trigger signal has a rising edge, −1 when the trigger signal has a
falling edge and 0 at all other times.

Probe Signal Output
The output signal of the Trigger block as described for the parameter Show
output port.
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Turn-on Delay

Purpose Delay rising flank of input pulses by fixed dead time

Library Control / Delays

Description This block is used to delay the turn-on command for power semiconductors:

• When the input signal changes from 0 to non-zero, the output signal will be
set to 1 after the dead time has passed, provided that the input signal has
remained non-zero.

• When the input signal becomes 0, the output is immediately set to 0.

Parameter Dead time source
Specifies whether the dead time is determined by the Dead time parameter
(internal) or by an external input signal (external).

Dead time
Time by which the turn-on event is delayed, in seconds (s). If set to 0, the
delay is disabled, i.e. the output is set to 1 immediately when the input sig-
nal becomes non-zero.

Dead time rounding (fixed-step)
If the dead time is determined by an external signal and the Turn-on Delay
is used with a fixed-step solver, this parameter specifies how the dead time
is rounded to an integer multiple of the fixed-step size.

Probe Signals Input
The block input signal.

Output
The block output signal.
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Variable Capacitor

Purpose Capacitance controlled by signal

Library Electrical / Passive Components

Description This component models a variable capacitor. The capacitance is determined by
the signal fed into the input of the component. The current through a variable
capacitance is determined by the equation

i =
d

dt
C · v + C · d

dt
v

Since v is the state variable the equation above must be solved for dv
dt . The con-

trol signal must provide the values of both C and d
dtC in the following form:[

C1 C2 . . . Cn
d
dtC1

d
dtC2 . . .

d
dtCn

]
. It is the responsibility of the user to provide

the appropriate signals for a particular purpose (see further below).

If the component has multiple phases, you can choose to include the ca-
pacitive coupling of the phases. In this case the control signal vector
must contain the elements of the capacitance matrix (row by row) fol-
lowed by their derivatives with respect to time, e.g. for two coupled phases:[
C11 C12 C21 C22

d
dtC11

d
dtC12

d
dtC21

d
dtC22

]
. The control signal thus has a width

of 2 · n2, n being the number of phases.

Note The momentary capacitance may not be set to zero. In case of coupled
capacitors, the capacitance matrix may not be singular.

There are two common use cases for variable capacitors, which are described in
detail below: saturable capacitors, in which the capacitance is a function of the
voltage and electrostatic actuators, in which the capacitance is a function of an
external quantity, such as a capacitor with movable plates.

Saturable Capacitor Modeling

When specifying the characteristic of a saturable capacitor, you need to distin-
guish carefully between the total capacitance Ctot(v) = Q/v and the differential
capacitance Cdiff(v) = dQ/dv.
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With the total capacitance Ctot(v) = Q/v you have

i =
dQ

dt

=
d

dt
(Ctot · v)

= Ctot ·
dv

dt
+

dCtot

dt
· v

= Ctot ·
dv

dt
+

dCtot

dv
· dv
dt

· v

=

(
Ctot +

dCtot

dv
· v

)
· dv
dt

,

which can be implemented as follows:

Ctot(v)

dCtot/dv *
*

++

0

V

With the differential capacitance Cdiff(v) = dQ/dv you have

i =
dQ

dt

=
dQ

dv
· dv
dt

= Cdiff · dv
dt

,

which can be implemented as follows:

Cdiff(v)

0

V

Note that in both cases the d
dtC-input of the Variable Capacitor is zero!
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Actuator Modeling

In an electrostatic actuator the capacitance is determined by an external quan-
tity such as the distance x between the movable plates of a capacitor: C = C(x).
Therefore you have

i = C · dv
dt

+
dC

dt
· v

= C · dv
dt

+
dC

dx
· dx
dt

· v ,

which can be implemented as follows:

dx/dt

1/s
C(x)

dC/dx
*
*

x

Note that x is preferably calculated as the integral of dx/dt rather than calcu-
lating dx/dt as the derivative of x.

Parameters Capacitive coupling
Specifies whether the phases should be coupled capacitively. This parame-
ter determines how the elements of the control signal are interpreted. The
default is off.

Initial voltage
The initial voltage of the capacitor at simulation start, in volts (V). This
parameter may either be a scalar or a vector corresponding to the implicit
width of the component. The positive pole is marked with a “+”. The initial
voltage default is 0.

Probe Signals Capacitor voltage
The voltage measured across the capacitor, in volts (V). A positive voltage
is measured when the potential at the terminal marked with “+” is greater
than the potential at the unmarked terminal.

Capacitor current
The current flowing through the capacitor, in amperes (A).
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Variable Frequency PWM

Purpose Generate PWM signals with variable frequency

Library Control / Modulators

Description

m

f'
s

The Variable Frequency PWM block generates one or several PWM signals with
a variable switching frequency.

The block offers different regular sampling methods for the modulation in-
dex if the parameter Carrier type is set to Symmetrical (carrier counts
up/down). If double edge sampling is used, the modulation index is updated at
the minimum and maximum of the carrier. The regular sampling methods are
visualized in the Symmetrical PWM block (see page 706). If the Carrier type
parameter is set to Sawtooth (carrier counts up), the modulation index is
updated when the carrier reaches the minimum.

The f ′ input is sampled when the carrier reaches the minimum, regardless of
the Carrier type. The figure below illustrates the f ′ input sampling and the
sampling instant is indicated by a solid black dot.

In- and Out-
puts

The input m is the modulation index, f ′ is a frequency scaling factor, and the
output s is the switching function. If the modulation index is a vector, the
switching function is also a vector of the same width. The input f ′ has to be a
scalar value. The output s is in on-state if the modulation index m is greater
than the carrier.

m
A scalar or vector representing the modulation index.

f’
A scalar signal that represents a scaling factor for the nominal carrier fre-
quency. The resulting carrier frequency is calculated as fPWM = f ′ · fnominal,
where fnominal is the value of the Nominal carrier frequency parameter.
The f ′ input must be in the range [0.001, 1000].

Parameters Carrier type
Specifies the carrier type. Sawtooth (carrier counts up) and Symmetri-
cal (carrier counts up/down) counter modes are supported.

Modulation index sampling
The Regular Sampling method lets you choose among single update at ei-
ther min or max, and double update at both min and max of the carrier.

803



15 Component Reference

Scaling Factor f'

Carrier and Modulation Index

Min/Max Events

Switching Signal

1.0

2.0

-1

0

1

-1

0

1

Min

Max

This parameter is visible if the Carrier type parameter is set to Symmet-
rical (carrier counts up/down).

Nominal carrier frequency
The nominal frequency fnominal of the carrier signal when the f ′ scaling fac-
tor input is equal to 1, in hertz (Hz).

Carrier limits [min max]
The range of the carrier. The default is [-1 1].

Output values [off on]
Values of the switching function in off-state and on-state. The default is [-
1 1].

Probe Signals Max event
Outputs a rising edge if the carrier reaches the maximum value.

Min event
Outputs a rising edge if the carrier reaches the minimum value.
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Carrier
Outputs the carrier signal for each channel.
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Variable Inductor

Purpose Inductance controlled by signal

Library Electrical / Passive Components

Description This component models a variable inductor. The inductance is determined by
the signal fed into the input of the component. The voltage across a variable
inductance is determined by the equation

v = L · di
dt

+
dL

dt
· i

Since i is the state variable the equation above must be solved for di
dt . The con-

trol signal must provide the values of both L and d
dtL in the following form:[

L1 L2 . . . Ln
d
dtL1

d
dtL2 . . .

d
dtLn

]
. It is the responsibility of the user to provide

the appropriate signals for a particular purpose (see further below).

If the component has multiple phases, you can choose to include the in-
ductive coupling of the phases. In this case the control signal vector must
contain the elements of the inductivity matrix (row by row) followed
by their derivatives with respect to time, e.g. for two coupled phases:[
L11 L12 L21 L22

d
dtL11

d
dtL12

d
dtL21

d
dtL22

]
. The control signal thus has a width

of 2 · n2, n being the number of phases.

Note The momentary inductance may not be set to zero. In case of coupled
inductors, the inductivity matrix may not be singular.
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There are two common use cases for variable inductors, which are described
in detail below: saturable inductors, in which the inductance is a function of
the current and actuators, in which the inductance is a function of an external
quantity, such as a solenoid with a movable core.

For a more complex example of a variable inductor that depends on both the in-
ductor current and an external quantity see the Switched Reluctance Machine
(on page 702).

Saturable Inductor Modeling

When specifying the characteristic of a saturable inductor, you need to distin-
guish carefully between the total inductivity Ltot(i) = Ψ/i and the differential
inductivity Ldiff(i) = dΨ/di. See also the piece-wise linear Saturable Inductor
(on page 655).

With the total inductivity Ltot(i) = Ψ/i you have

v =
dΨ

dt

=
d

dt
(Ltot · i)

= Ltot ·
di

dt
+

dLtot

dt
· i

= Ltot ·
di

dt
+

dLtot

di
· di
dt

· i

=

(
Ltot +

dLtot

di
· i
)
· di
dt

,

which can be implemented as follows:

A

Ltot(i)

dLtot/di *
*

++

0

With the differential inductivity Ldiff(i) = dΨ/di you have
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v =
dΨ

dt

=
dΨ

di
· di
dt

= Ldiff · di
dt

,

which can be implemented as follows:

A

Ldiff(i)

0

Note that in both cases the d
dtL-input of the Variable Inductor is zero!

Actuator Modeling

In an actuator the inductivity is determined by an external quantity such as
the position x of the movable core in a solenoid: L = L(x). Therefore you have

v = L · di
dt

+
dL

dt
· i

= L · di
dt

+
dL

dx
· dx
dt

· i ,

which can be implemented as follows:

dx/dt

1/s
L(x)

dL/dx
*
*

x

Note that x is preferably calculated as the integral of dx/dt rather than calcu-
lating dx/dt as the derivative of x.
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Parameters Inductive coupling
Specifies whether the phases should be coupled inductively. This parame-
ter determines how the elements of the control signal are interpreted. The
default is off.

Initial current
The initial current through the inductor at simulation start, in amperes (A).
This parameter may either be a scalar or a vector corresponding to the im-
plicit width of the component. The direction of a positive initial current is
indicated by a small arrow in the component symbol. The default of the ini-
tial current is 0.

Probe Signals Inductor current
The current flowing through the inductor, in amperes (A). The direction of a
positive current is indicated with a small arrow in the component symbol.

Inductor voltage
The voltage measured across the inductor, in volts (V).
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Variable Magnetic Permeance

Purpose Variable permeance controlled by external signal

Library Magnetic / Components

Description This component provides a magnetic flux path with a variable permeance. The
component is used to model non-linear magnetic material properties such as
saturation and hysteresis. The permeance is determined by the signal fed into
the input of the component. The flux-rate through a variable permeance P(t) is
governed by the equation:

Φ̇ =
d

dt
(P · F ) = P · dF

dt
+

d

dt
P · F

Since F is the state variable the equation above must be solved for dF
dt . The con-

trol signal must provide the values of P(t), d
dtP(t) and Φ as a vector. It is the

responsibility of the user to provide the appropriate signals.

Modeling non-linear material properties

When specifying the characteristic of a non-linear permeance, we need to dis-
tinguish carefully between the total permeance Ptot(F ) = Φ/F and the differen-
tial permeance Pdiff(F ) = dΦ/dF .

If the total permeance Ptot(F ) is known, the flux-rate Φ̇ through a time-varying
permeance is calculated as:

Φ̇ =
dΦ

dt

=
d

dt
(Ptot · F )

= Ptot ·
dF

dt
+

dPtot

dt
· F

= Ptot ·
dF

dt
+

dPtot

dF
· dF
dt

· F

=

(
Ptot +

dPtot

dF
· F

)
· dF
dt

In this case, the control signal for the variable permeance component is:
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
P(t)

d
dtP(t)

Φ(t)

 =


Ptot +

d
dF Ptot · F

0

Ptot · F


In most cases, however, the differential permeance Pdiff(F ) is provided to char-
acterize magnetic saturation and hysteresis. With

Φ̇ =
dΦ

dt

=
dΦ

dF
· dF
dt

= Pdiff · dF
dt

the control signal is
P(t)

d
dtP(t)

Φ(t)

 =


Pdiff

0

Ptot · F


Parameter Initial MMF

Magneto-motive force at simulation start, in ampere-turns (A).

Probe Signals MMF
The magneto-motive force measured from the marked to the unmarked ter-
minal, in ampere-turns (A).

Flux
The magnetic flux flowing through the component, in webers (Wb). A flux
entering at the marked terminal is counted as positive.
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Variable Phase PWM

Purpose Generate PWM signals with variable phase shift

Library Control / Modulators

Description

m
s

ph

The Variable Phase PWM block can generate phase-shifted PWM signals.
The block offers different regular sampling methods for the modulation in-
dex if the parameter Carrier type is set to Symmetrical (carrier counts
up/down). If double edge sampling is used, the modulation index is updated
at the minimum and maximum of the carrier. The regular sampling methods
are visualized in the Symmetrical PWM block (see page 706). For a Sawtooth
(carrier counts up) Carrier type, the modulation index is updated when
the carrier reaches the minimum.
The ph input is only sampled when the carrier of the internal master channel
reaches the minimum, regardless of the Carrier type. The figure below illus-
trates the sampling of the ph input. The sampling instant is indicated by a solid
black dot. The phase shift of the channels are always relative to the internal
master channel.

In- and Out-
puts

The input m is the modulation index, ph the phase shift in per unit (p.u.), and
the output s is the switching function. If the modulation index is a vector, the
switching function and the ph input are also a vector of the same width. The
output s of a channel goes to the on-state if the modulation index m of the re-
spective channel is greater than the carrier.
m

A scalar or vector representing the modulation index. If the modulation is
a scalar signal and the ph input a vector, the output is a vector of the same
width as the ph input. In this case, all output channels will have an identi-
cal modulation index.

ph
A vector representing the phase shift of each output in respect to the inter-
nal master channel, in per unit (p.u.).

Parameters Carrier type
Specifies the carrier type. Sawtooth (carrier counts up) and Symmetri-
cal (carrier counts up/down) counter modes are supported.

Modulation index sampling
The Regular Sampling method of the modulation index lets you choose
among single update at either min or max, and double update at both min
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Master min event (phase sampling point)

Phase Shift

Carrier and Modulation Index Ch. 1

Carrier and Modulation Index Ch. 2

Switching Signals

0.0

1.0

(p
.u

.)

0.0

0.2

-1

0

1

-1

0

1

0

0

Ch. 1
Ch. 2

Ch. 1
Ch. 2

and max of the carrier. This parameter is made visible if the Carrier type
parameter is set to Symmetrical (carrier counts up/down).

Carrier frequency
The frequency of the carrier signal, in hertz (Hz).

Carrier limits [min max]
The range of the carrier. The default is [-1 1].

Output values [off on]
Values of the switching function in off-state and on-state. The default is [-
1 1].

Probe Signals Master max event
Outputs a rising edge if the internal master carrier reaches the maximum
value.
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Master min event (phase sampling point)

Phase Shift

Carrier and Modulation Index Ch. 1

Carrier and Modulation Index Ch. 2

Switching Signals

0.0

1.0

(p
.u

.)

0.0

0.2

-1

0

1

-1

0

1

0

0

Ch. 1
Ch. 2

Ch. 1
Ch. 2

Master min event (phase sampling point)
Outputs a rising edge if the internal master carrier reaches the minimum
value. This instant also describes the point in time when a new phase value
of each channel is sampled.

Master carrier
Outputs the carrier signal for each channel.

Max event
Outputs a rising edge if the carrier reaches the maximum value.

Min event
Outputs a rising edge if the carrier reaches the minimum value.

Carrier
Outputs the carrier signal for each channel.
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Variable Resistor

Purpose Resistance controlled by a signal

Library Electrical / Passive Components

Description This component provides an ideal resistor whose resistance is controlled by the
input signal.

Note The Variable Resistor creates an algebraic loop. See section “Block Sort-
ing” (on page 31) for more information on algebraic loops.

Probe Signals The small dot in the component icon marks the positive terminal.

Resistor voltage
The voltage measured across the resistor from the positive to the negative
terminal.

Resistor current
The current flowing into the positive terminal.

Resistor power
The power consumed by the resistor.
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Variable Resistor with Constant Capacitor

Purpose Controlled resistance in parallel with constant capacitance

Library Electrical / Passive Components

Description This component models a variable resistor with a constant capacitor connected
in parallel. The resistance is determined by the signal fed into the input of the
component. It may not be set to zero.

Note In this component the resistor is implemented as a voltage-dependent
current source. Without the parallel capacitor, which fixes the momentary volt-
age, this would result in an algebraic loop. Therefore, the capacitance may not
be set to zero.

Parameters Capacitance
The value of the capacitor, in farads (F). All finite positive and negative val-
ues are accepted, excluding 0. The default is 100e-6.

In a vectorized component, all internal capacitors have the same value if the
parameter is a scalar. To specify the capacitances individually use a vector
[C1 C2 . . . Cn] . The length n of the vector determines the width of the com-
ponent.

Initial voltage
The initial voltage of the capacitor at simulation start, in volts (V). This
parameter may either be a scalar or a vector corresponding to the width of
the component. The positive pole is marked with a “+”. The initial voltage
default is 0.

Probe Signal Capacitor voltage
The voltage measured across the capacitor, in volts (V). A positive voltage
is measured when the potential at the terminal marked with “+” is greater
than the potential at the unmarked terminal.
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Variable Resistor with Constant Inductor

Purpose Controlled resistance in series with constant inductance

Library Electrical / Passive Components

Description This component models a variable resistor with a constant inductor connected
in series. The resistance is determined by the signal fed into the input of the
component.

Note In this component the resistor is implemented as a current-dependent
voltage source. Without the series inductor, which fixes the momentary current,
this would result in an algebraic loop. Therefore, the inductance may not be set
to zero.

Parameters Inductance
The inductance in henries (H). All finite positive and negative values are
accepted, excluding 0. The default is 1e-3.

In a vectorized component, all internal inductors have the same inductance
if the parameter is a scalar. To specify the inductances individually use a
vector [L1 L2 . . . Ln]. The length n of the vector determines the width of the
component.

Initial current
The initial current through the component at simulation start, in amperes
(A). This parameter may either be a scalar or a vector corresponding to the
width of the component. The direction of a positive initial current is indi-
cated by a small arrow in the component symbol. The default of the initial
current is 0.

Probe Signal Inductor current
The current flowing through the inductor, in amperes (A). The direction of a
positive current is indicated with a small arrow in the component symbol.
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Variable Resistor with Variable Capacitor

Purpose Controlled resistance in parallel with controlled capacitance

Library Electrical / Passive Components

Description This component models a variable resistor with a variable capacitor connected
in parallel. The resistance and capacitance are determined by the signals fed
into the inputs of the component. The current through this component is deter-
mined by the equation

i =

(
1

R
+

d

dt
C

)
· v + C · d

dt
v

The control signal for the capacitor must provide the values of both C and d
dtC

in the following form:
[
C1 C2 . . . Cn

d
dtC1

d
dtC2 . . .

d
dtCn

]
. It is the responsibility

of the user to provide the appropriate signals for a particular purpose. For de-
tailed information see the Variable Capacitor (on page 800).

If the component has multiple phases, you can choose to include the ca-
pacitive coupling of the phases. In this case the control signal vector
must contain the elements of the capacitance matrix (row by row) fol-
lowed by their derivatives with respect to time, e.g. for two coupled phases:[
C11 C12 C21 C22

d
dtC11

d
dtC12

d
dtC21

d
dtC22

]
. The control signal thus has a width

of 2 · n2, n being the number of phases.

Note The momentary capacitance and the resistance may not be set to zero.
In case of coupled capacitors, the capacitance matrix may not be singular.

Parameters Capacitive coupling
Specifies whether the phases should be coupled capacitively. This parame-
ter determines how the elements of the control signal are interpreted. The
default is off.

Initial voltage
The initial voltage of the capacitor at simulation start, in volts (V). This
parameter may either be a scalar or a vector corresponding to the implicit
width of the component. The positive pole is marked with a “+”. The initial
voltage default is 0.
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Probe Signal Capacitor voltage
The voltage measured across the capacitor, in volts (V). A positive voltage
is measured when the potential at the terminal marked with “+” is greater
than the potential at the unmarked terminal.
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Variable Resistor with Variable Inductor

Purpose Controlled resistance in series with controlled inductance

Library Electrical / Passive Components

Description This component models a variable resistor with a variable inductor connected
in series. The resistance and inductance are determined by the signals fed into
the inputs of the component. The voltage across this component is determined
by the equation

v =

(
R+

d

dt
L

)
· i+ L · d

dt
i

The control signal for the inductor must provide the values of both L and d
dtL

in the following form:
[
L1 L2 . . . Ln

d
dtL1

d
dtL2 . . .

d
dtLn

]
. It is the responsibility

of the user to provide the appropriate signals for a particular purpose. For de-
tailed information see the Variable Inductor (on page 806).

If the component has multiple phases, you can choose to include the in-
ductive coupling of the phases. In this case the control signal vector must
contain the elements of the inductivity matrix (row by row) followed
by their derivatives with respect to time, e.g. for two coupled phases:[
L11 L12 L21 L22

d
dtL11

d
dtL12

d
dtL21

d
dtL22

]
. The control signal thus has a width

of 2 · n2, n being the number of phases.

Note

• The momentary inductance may not be set to zero. In case of coupled induc-
tors, the inductivity matrix may not be singular.

• The control signal for the momentary inductance values must be continuous.
Discontinuous changes will produce non-physical results.

Parameters Inductive coupling
Specifies whether the phases should be coupled inductively. This parame-
ter determines how the elements of the control signal are interpreted. The
default is off.

Initial current
The initial current through the component at simulation start, in amperes
(A). This parameter may either be a scalar or a vector corresponding to the

820



Variable Resistor with Variable Inductor

implicit width of the component. The direction of a positive initial current
is indicated by a small arrow in the component symbol. The default of the
initial current is 0.

Probe Signal Inductor current
The current flowing through the inductor, in amperes (A). The direction of a
positive current is indicated with a small arrow in the component symbol.
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Voltage Source (Controlled)

Purpose Generate variable voltage

Library Electrical / Sources

Description The Controlled Voltage Source generates a variable voltage between its two
electrical terminals. The voltage is considered positive at the terminal marked
with a “+”. The momentary voltage is determined by the signal fed into the in-
put of the component.

Note A voltage source may not be short-circuited or connected in parallel to a
capacitor or any other voltage source.

Parameters Discretization behavior
Specifies whether a zero-order hold or a first-order hold is applied to the in-
put signal when the model is discretized. For details, see “Physical Model
Discretization” (on page 35).

The option Non-causal zero-order hold applies a zero-order hold with the
input signal value from the current simulation step instead of the previous
one. This option can be used to compensate for a known delay of the input
signal.

Allow state-space inlining
For expert use only! When set to on and the input signal is a linear com-
bination of electrical measurements, PLECS will eliminate the input vari-
able from the state-space equations and substitute it with the correspond-
ing output variables. The default is off.

Probe Signals Source voltage
The source voltage in volts (V).

Source current
The current flowing through the source, in amperes (A).

Source power
The instantaneous output power of the source, in watts (W).

822



Voltage Source AC

Voltage Source AC

Purpose Generate sinusoidal voltage

Library Electrical / Sources

Description The AC Voltage Source generates a sinusoidal voltage between its two electrical
terminals. The voltage is considered positive at the terminal marked with a “+”.
The momentary voltage v is determined by the equation

v = A · sin(ω · t+ φ)

where t is the simulation time.

If a variable-step solver is used, the solver step size is automatically limited to
ensure that a smooth voltage waveform is produced.

Note A voltage source may not be short-circuited or connected in parallel to a
capacitor or any other voltage source.

Parameters Each of the following parameters may either be a scalar or a vector correspond-
ing to the implicit width of the component:

Amplitude
The amplitude A of the voltage, in volts (V). The default is 1.

Frequency
The angular frequency ω, in

(
rad
s

)
. The default is 2*pi*50 which corre-

sponds to 50Hz.

Phase
The phase shift φ, in radians. The default is 0.

Probe Signals Source voltage
The source voltage in volts (V).

Source current
The current flowing through the source, in amperes (A).

Source power
The instantaneous output power of the source, in watts (W).
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Voltage Source AC (3-Phase)

Purpose Generate 3-phase sinusoidal voltage

Library Electrical / Sources

Description The three phase Voltage Source generates three sinusoidal voltages between
its electrical terminals. The first phase is marked with a small black dot. The
momentary voltages vi are determined by the equation

vi = Ai · sin(2π · f · t+ φi +∆φi)

where t is the simulation time and φ0 = 0, φ1 = −2/3 · π and φ2 = 2/3 · π.

Note A voltage source may not be short-circuited or connected in parallel to a
capacitor or any other voltage source.

Parameters Amplitude
The amplitude A of the voltage, in volts (V). The value can be given as a
scalar or as a vector with three elements [A0, A1, A2].

Frequency
The frequency f , in hertz (Hz).

Phase offset
The phase offset ∆φ, in radians. The value can be given as a scalar or as a
vector with three elements [∆φ0,∆φ1,∆φ2].

Neutral point
Show or hide the neutral point terminal.

Probe Signals Source voltage
The source voltages in volts (V) as a vectorized signal.

Source current
The currents flowing through the source, in amperes (A) as a vectorized sig-
nal.

Source power
The combined instantaneous output power of the source, in watts (W).
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Voltage Source DC

Purpose Generate constant voltage

Library Electrical / Sources

Description The DC Voltage Source generates a constant voltage between its two electrical
terminals. The voltage is considered positive at the terminal marked with a “+”.

Note A voltage source may not be short-circuited or connected in parallel to a
capacitor or any other voltage source.

Parameter Voltage
The magnitude of the constant voltage, in volts (V). This parameter may ei-
ther be a scalar or a vector defining the width of the component. The default
value is 1.

Probe Signals Source voltage
The source voltage in volts (V).

Source current
The current flowing through the source, in amperes (A).

Source power
The instantaneous output power of the source, in watts (W).
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Voltmeter

Purpose Output measured voltage as signal

Library Electrical / Meters

Description

V

The Voltmeter measures the voltage between its two electrical terminals and
provides it as a signal at the output of the component. A positive voltage is
measured when the potential at the terminal marked with a “+” is greater than
at the unmarked one. The output signal can be made accessible in Simulink
with an Output block (see page 674) or by dragging the component into the dia-
log box of a Probe block.

Note The Voltmeter is ideal, i.e. it has an infinite internal resistance. Hence,
if multiple voltmeters are connected in series, the voltage across an individual
voltmeter is undefined. This produces a run-time error.

Probe Signal Measured voltage
The measured voltage in volts (V).
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White Noise

Purpose Generate normally distributed random numbers

Library Control / Sources

Description The White Noise block generates normally distributed (Gaussian) random num-
bers for modeling band-limited white noise. The mean and the standard devi-
ation of the underlying distribution can be configured in the component dialog.
The figure below illustrates the distribution for three different sets of parame-
ters. The seed of the generator initializes the algorithm at the simulation start.

For the same seed, the sequence of random numbers is reproduced in every
simulation run. If this behavior is undesired, the system time can be used as
a seed. To minimize correlation effects, it is recommended to use different seeds
if multiple random generators are used in one model.

Parameters Mean µ
The mean value of the distribution.

Standard deviation σ
The standard deviation of the distribution.

Seed
The seed used to initialize the White Noise generator.
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Sample time
A scalar specifying the sampling period or a two-element vector specifying
the sampling period and offset, in seconds (s), used for generating random
output values. See also section “Sample Times” (on page 38).
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References
Mersenne Twister: http://en.wikipedia.org/wiki/Mersenne_twister

Leva, J. L., “A Fast Normal Random Number Generator", ACM Transactions
on Mathematical Software, vol. 18, no. 4, pp. 449-453, 1992.
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Winding

Purpose Ideal winding defining an electro-magnetic interface

Library Magnetic / Sources

Description The Winding forms the interface between the electrical and the magnetic do-
main. A winding of N turns is described with the equations:

v = N Φ̇

i =
F

N

where v and i are voltage and current at the electrical terminals. F is the
magneto-motive force (MMF) and Φ̇ is the rate-of-change of the magnetic flux
through the winding. The left-hand side of the equations above refers to the
electrical domain, the right-hand side to the magnetic domain.

The sign conventions used for the electrical and magnetic quantities are illus-
trated in the figure below for the two polarities of the winding. Notice the posi-
tions of the black dot and the brown arrow in the winding symbol.

+

-

+

-

-

+

+

-

v

i

i

vF F

ΦΦ

Parameters Number of turns
Specifies the number of winding turns.

Polarity
Specifies the polarity of the winding. Choosing a negative polarity is equiva-
lent to specifying a negative number of turns.

Probe Signals Winding voltage
The voltage measured from the positive (marked) to the negative electrical
terminal of the winding, in volts (V).

Winding current
The current flowing through the winding, in amperes (A). A current enter-
ing the winding at the marked terminal is counted as positive.
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MMF
The magneto-motive force measured from the marked to the unmarked
magnetic terminal, in ampere-turns (A).
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Wire Multiplexer

Purpose Bundle several wires into bus

Library Electrical / Connectivity

Description This multiplexer combines several individual wires into a wire bus. The indi-
vidual wires may themselves be buses. In the block icon, the first individual
wire is marked with a dot.

Parameter Width
This parameter allows you to specify the number and/or width of the indi-
vidual wires. You can choose between the following formats for this parame-
ter:

Scalar: A scalar specifies the number of individual wires each having a
width of 1.

Vector: The length of the vector determines the number of individual wires.
Each element specifies the width of the corresponding individual wire.
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Wire Selector

Purpose Select or reorder elements from wire bus

Library Electrical / Connectivity

Description The Wire Selector block connects the individual elements of the output bus to
the specified elements of the input bus. The input bus is marked with a dot.

Parameters Input width
The width of the input bus.

Output indices
A vector with the indices of the input elements that the output bus should
contain.
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XY Plot

Purpose Display correlation between two signals

Library System

Description The XY Plot displays the relationship between two signals. It can be used in
PLECS circuits as well as in Simulink models. For detailed information on how
to work with the XY Plot see section “Using the XY Plot” (on page 109).

Parameters Title
The name which is displayed above the plot.

Sample time
A scalar specifying the sampling period or a two-element vector specifying
the sampling period and offset, in seconds (s), used to sample the input sig-
nals. The default is -1 (inherited). Other valid settings are 0 (continuous)
or a valid fixed-step discrete sample time pair. See also section “Sample
Times” (on page 38).

Limit samples
If this option is selected, the XY Plot will only save the last n sample values
during a simulation. It can be used in long simulations to limit the amount
of memory that is used by PLECS. If the option is unchecked, all sample
values are stored in memory.

Time range
This option may be used for periodic systems to limit the displayed data to a
given number of periods.

The time range value determines the time range that is displayed in the
plot. If set to auto, the data over the whole simulation time range is used.
If a limit is given and the simulation time reaches an integer multiple of
this limit, the plot is cleared except for the data covering the last n time
ranges, where n is the number entered under Show last. The plot is ap-
pended until the simulation time reaches the next integer multiple of the
time range.

Plot style
This option lets you choose whether you would like to plot trajectories, vec-
tors or a combination of both. If vectors are drawn, the aspect ratio (see be-
low) is automatically fixed to 1:1.
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Keep aspect ratio (x:y)
If this option is selected, the aspect ratio of the axes is kept constant. A
ratio of x : y ensures that the length of x units on the x-axis matches the
length of y units on the y-axis.

Axis labels
The axis labels that are displayed on the x- and y-axis.

X- and Y-limits
The initial lower and upper bound of the x- and y-axis. If set to auto, the
axes are automatically scaled such that all data is visible. Note that setting
any of the limits to auto is computationally expensive and may have a con-
siderable impact on the simulation speed.
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Zener Diode

Purpose Zener diode with controlled reverse breakdown voltage

Library Electrical / Power Semiconductors

Description The Zener diode is a type of diode that permits current to flow in forward di-
rection like a normal diode (see page 411), but also in reverse direction if the
voltage is larger than the rated breakdown or Zener voltage. Zener diodes are
widely used to regulate the voltage across a circuit.

Parameters Zener voltage
Breakdown voltage Vz in reverse direction, in volts (V). If the diode is re-
verse conducting, the voltage drop across the diode is determined by this
Zener voltage plus the voltage across the Zener resistance.

Zener resistance
The resistance Rz, in ohms (Ω), if the diode is reverse conducting.

Forward voltage
Additional dc voltage Vf in volts (V) between anode and cathode when the
diode is forward conducting. The default is 0.

On-resistance
The resistance Rf of the forward conducting device, in ohms (Ω). The de-
fault is 0.

Probe Signals Diode voltage
The voltage measured between anode and cathode.

Diode current
The current through the diode flowing from anode to cathode.

Forward conductivity
Conduction state of the positive internal switch. The signal outputs 1 when
the diode is conducting in forward direction, and 0 otherwise.

Reverse conductivity
Conduction state of the negative internal switch. The signal outputs 1 when
the diode is conducting in reverse direction, and 0 otherwise.
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Zero Order Hold

Purpose Sample and hold input signal periodically

Library Control / Discrete

Description The Zero Order Hold samples the input signal and holds this value at its output
for a specified sample time.

Parameter Sample time
A scalar specifying the length of the hold time or a two-element vector spec-
ifying the hold time length and offset, in seconds (s). See also the Discrete-
Periodic sample time type in section “Sample Times” (on page 38).

Probe Signals Input
The input signal.

Output
The output signal.
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16

Additional Simulink Blocks

This chapter lists the contents of the PLECS Extras library for PLECS Blockset
in alphabetical order.



16 Additional Simulink Blocks

AC Sweep

Purpose Perform AC sweep

Library PLECS Extras / Analysis Tools

Description The AC Sweep block enables you to determine the transfer function of a generic
system from a single input to one or more outputs. The analysis is performed by
injecting a small sinusoidal signal at different frequencies into the system and
extracting the same frequencies from the system output(s) by Fourier analysis.
The perturbation signal is available at the block output. The system outputs to
be analyzed must be fed into the block’s input port.

An ac sweep can be started either by clicking the button Start analysis or with
the MATLAB command

placsweep(block);

where block is the Simulink handle or the full block path of the AC Sweep
block. The block handle or path can be followed by parameter/value pairs that
override the settings in the dialog box.

For additional information see section “AC Analysis” (on page 182).

Parameters System period length
The period length of the unperturbed system, in seconds (s).

Simulation start time
The simulation start time for the ac sweep, in seconds (s).

Frequency sweep range
A vector containing the lowest and highest perturbation frequency, in hertz
(Hz).

Frequency sweep scale
Specifies whether the sweep frequencies should be distributed on a linear
or logarithmic scale.

Number of points
The number of data points generated.

Amplitude at first freq
The amplitude of the perturbation signal at the lowest frequency. The am-
plitudes at the other frequencies are calculated as

Ai = A1 ·
√
fi/f1

840



AC Sweep

Show reference input
If this parameter is set to on, the block will show an additional input port,
and the signal that is connected to it is used to determine the spectrum U(s)
for the calculation of the transfer function G(s) = Y (s)/U(s). Otherwise,
U(s) is determined by the internally generated perturbation signal.

Method
Specifies the method to use for obtaining the steady-state operating point of
the system for each perturbation frequency.

Brute force simulation simply simulates the system on a cycle-by-cycle
basis until the difference between the state variables at the beginning and
end of a cycle become sufficiently small. With this setting the parameter
Max number of iterations actually limits the number of cycles until a
steady state is reached.

Steady-state analysis performs a steady-state analysis for each perturba-
tion frequency.

Start from model initial state uses the initial state values specified in
the model – either in the individual blocks or in the simulation parameters.

Start from unperturbed steady state performs a steady-state analysis
of the unperturbed system to determine the initial state vector for the ac
sweep.

Termination tolerance
The relative error bound for all state variables. The analysis continues until

|x(t0)− x(t0 + T )|
max |x|

≤ rtol

for each state variable.

Max number of iterations
The maximum number of iterations allowed.

Output variable
The name of a MATLAB variable used to store the transfer function at the
end of an analysis. If the analysis was run interactively from the GUI, the
variable is assigned in the MATLAB base workspace. If the analysis was
run with the placsweep command, the variable is assigned in the caller’s
workspace.

Plot bode diagram
Specifies whether to plot the transfer function in a bode diagram.
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16 Additional Simulink Blocks

Display level
Specifies the level of detail of the diagnostic messages displayed in the com-
mand window (iteration, final, off).

Hidden model states
Specifies how to handle Simulink blocks with ’hidden’ states, i.e. states that
are not stored in the state vector (error, warning, none).
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Discrete Analysis

Discrete Analysis

Please refer to the documentation on the following components:

• Discrete Fourier Transform (see page 455)
• Discrete Mean Value (see page 421)
• Discrete RMS Value (see page 631)
• Discrete Total Harmonic Distortion (see page 750)
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Impulse Response Analysis

Purpose Perform impulse response analysis

Library PLECS Extras / Analysis Tools

Description The Impulse Response Analysis block enables you to determine the transfer
function of a generic system from a single input to one or more outputs. The
analysis is performed by injecting a small rectangular pulse into the system
and computing the inverse Laplace transform of the system response(s). The
perturbation signal is available at the block output. The system outputs to be
analyzed must be fed into the block’s input port.

An analysis can be started either by clicking the button Start analysis or with
the MATLAB command

plimpulseresponse(block);

where block is the Simulink handle or the full block path of the Impulse Re-
sponse Analysis block. The block handle or path can be followed by parame-
ter/value pairs that override the settings in the dialog box.

For additional information see section “Impulse Response Analysis” (on page
182).

Parameters System period length
The period length of the unperturbed system, in seconds (s).

Simulation start time
The simulation start time for the impulse response analysis, in seconds (s).

Frequency sweep range
A vector containing the lowest and highest perturbation frequency.

Frequency sweep scale
Specifies whether the sweep frequencies should be distributed on a linear
or logarithmic scale.

Number of points
The number of data points generated.

Perturbation
The amplitude of the perturbation signal.
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Impulse Response Analysis

Compensation for discrete pulse
Specifies whether and how the effect of the sampling should be compen-
sated. See section “Compensation for Discrete Pulse” (on page 183) for an
explanation of the parameter values.

Termination tolerance
The relative error bound used in the initial steady-state analysis.

Max number of iterations
The maximum number of iterations allowed during the initial steady-state
analysis.

Output variable
The name of a MATLAB variable used to store the transfer function at the
end of an analysis. If the analysis was run interactively from the GUI, the
variable is assigned in the MATLAB base workspace. If the analysis was
run with the placsweep command, the variable is assigned in the caller’s
workspace.

Plot bode diagram
Specifies whether to plot the transfer function in a bode diagram.

Display level
Specifies the level of detail of the diagnostic messages displayed in the com-
mand window (iteration, final, off).

Hidden model states
Specifies how to handle Simulink blocks with ’hidden’ states, i.e. states that
are not stored in the state vector (error, warning, none).
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Loop Gain Analysis (AC Sweep)

Purpose Determine loop gain of closed control loop

Library PLECS Extras / Analysis Tools

Description The Loop Gain Analysis block enables you to determine the gain of a closed con-
trol loop. To measure the loop gain, insert the block anywhere in the control
loop. The loop gain is determined by adding a small sinusoidal signal at various
frequencies and extracting the same frequencies from the system before and
after the summation point by Fourier analysis.

An analysis can be started either by clicking the button Start analysis or with
the MATLAB command

placsweep(block);

where block is the Simulink handle or the full block path of the Loop Gain
Analysis block. Otherwise, the block remains inactive and does not influence
the control loop.

For additional information see section “AC Analysis” (on page 182).

Note The Loop Gain Analysis block works only on scalar signals. In order to
analyze the gain of a vectorized control loop you need to demultiplex the vector
signal into individual scalar signals before inserting the Loop Gain Analysis
block.

Parameters The parameters are identical to those of the AC Sweep block (see page 840).
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Loop Gain Analysis (Multitone)

Purpose Determine loop gain of closed control loop

Library PLECS Extras / Analysis Tools

Description The Loop Gain Analysis block enables you to determine the gain of a closed con-
trol loop. To measure the loop gain, insert the block anywhere in the control
loop. The loop gain is determined by adding a small sinusoidal signal at various
frequencies and extracting the same frequencies from the system before and
after the summation point by Fourier analysis.

An analysis can be started either by clicking the button Start analysis or with
the MATLAB command

plmultitone(block);

where block is the Simulink handle or the full block path of the Loop Gain
Analysis block. Otherwise, the block remains inactive and does not influence
the control loop.

For additional information see section “Multitone Analysis” (on page 184).

Note The Loop Gain Analysis block works only on scalar signals. In order to
analyze the gain of a vectorized control loop you need to demultiplex the vector
signal into individual scalar signals before inserting the Loop Gain Analysis
block.

Parameters The parameters are identical to those of the Multitone Analysis block (see page
849).
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Modulators

Please refer to the documentation on the following components:

• 2-Pulse Generator (see page 337)
• 3-Phase Overmodulation (see page 350)
• 6-Pulse Generator (see page 357)
• Blanking Time (see page 371)
• Blanking Time (3-Level) (see page 372)
• Sawtooth PWM (see page 660)
• Sawtooth PWM (3-Level) (see page 662)
• Symmetrical PWM (see page 706)
• Symmetrical PWM (3-Level) (see page 709)
• Peak Current Controller (see page 588)
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Multitone Analysis

Purpose Perform a multitone analysis

Library PLECS Extras / Analysis Tools

Description The Multitone Analysis block enables you to determine the transfer function
of a generic system from a single input to one or more outputs. The analysis is
performed by injecting a small multitone signal containing different frequencies
into the system and extracting the same frequencies from the system output(s)
by Fourier analysis. The perturbation signal is available at the block output.
The system outputs to be analyzed must be fed into the block’s input port.

A multitone analysis can be started either by clicking the button Start analy-
sis or with the MATLAB command

plmultitone(block);

where block is the Simulink handle or the full block path of the Multitone Anal-
ysis block. The block handle or path can be followed by parameter/value pairs
that override the settings in the dialog box.

For additional information see section “Multitone Analysis” (on page 184).

Parameters Frequency range
A vector containing the lowest and highest perturbation frequency.

Amplitude
The amplitude of the perturbation signal.

Show reference input
If this parameter is set to on, the block will show an additional input port,
and the signal that is connected to it is used to determine the spectrum U(s)
for the calculation of the transfer function G(s) = Y (s)/U(s). Otherwise,
U(s) is determined by the internally generated perturbation signal.

Init. simulation period
The duration of an initial simulation performed before the response is mea-
sured. It is assumed that during this period, the system reaches its steady
state. The total simulation duration will be the sum of this parameter and
one period of the base frequency signal.

Output variable
The name of a MATLAB variable used to store the transfer function at the
end of an analysis. If the analysis was run interactively from the GUI, the
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variable is assigned in the MATLAB base workspace. If the analysis was
run with the plmultitone command, the variable is assigned in the caller’s
workspace.

Plot bode diagram
Specifies whether to plot the transfer function in a bode diagram.

Display level
Specifies the level of detail of the diagnostic messages displayed in the com-
mand window (iteration, final, off).
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Steady-State Analysis

Purpose Determine periodic steady-state operating point

Library PLECS Extras / Analysis Tools

Description The Steady-State Analysis block enables you to determine the steady-state op-
erating point of a generic periodic system. Copy this block anywhere into the
model that you want to analyze.

A steady-state analysis can be started either by clicking the button Start anal-
ysis or with the MATLAB command

plsteadystate(block);

where block is the Simulink handle or the full block path of the Steady-State
Analysis block. The block handle or path can be followed by parameter/value
pairs that override the settings in the dialog box.

For additional information see section “Steady-State Analysis” (on page 179).

Parameters System period
Specifies whether the system period is fixed, i.e. predetermined and con-
stant, or variable (e.g. in case of a hysteresis type controller). If variable
is selected, a trigger input will be drawn which is used to determine the end
of a period.

Trigger type
Specifies which trigger event on the input signal (rising, falling) marks
the end of a variable system period.

System period length/Max simulation time span
For a fixed system period, the period length; for a variable system period,
the maximum time span during which to look for a trigger event marking
the end of a period; in seconds (s).

Simulation start time
The simulation start time for the steady-state analysis, in seconds (s).

Termination tolerance
The relative error bound. The analysis continues until both the maximum
relative error in the state variables and the maximum relative change from
one iteration to the next are smaller than this bound for each state variable.
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16 Additional Simulink Blocks

Max number of iterations
The maximum number of iterations allowed.

Steady-state variable
The name of a MATLAB variable used to store the periodic steady-state vec-
tor at the end of an analysis. If the analysis was run interactively from the
GUI, the variable is assigned in the MATLAB base workspace. If the anal-
ysis was run with the plsteadystate command, the variable is assigned in
the caller’s workspace.

Show steady-state cycles
The number of cycles shown in the Simulink scopes at the end of an analy-
sis.

Display level
Specifies the level of detail (iteration, final, off) of the diagnostic mes-
sages displayed in the command window.

Hidden model states
Specifies how to handle Simulink blocks with ’hidden’ states, i.e. states that
are not stored in the state vector (error, warning, none).
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Timer

Purpose Generate piece-wise constant signal

Library PLECS Extras / Control Blocks

Description The Timer block generates a signal that changes at discrete instants and is oth-
erwise constant. You can use the Timer block e.g. in order to control switches
such as circuit breakers.

Parameters Time values
A vector containing the transition times, in seconds (s). This vector must
have the same length as the vector of output values. Before the first transi-
tion time the output is zero.

Output values
A vector containing the output values corresponding to the transition times.
This vector must have the same length as the vector of time values.
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Transformations

Please refer to the documentation on the following components:

• Transformation 3ph->RRF (see page 753)
• Transformation 3ph->SRF (see page 754)
• Transformation RRF->3ph (see page 755)
• Transformation RRF->SRF (see page 756)
• Transformation SRF->3ph (see page 757)
• Transformation SRF->RRF (see page 758)
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