
dx

www.plexim.com

Request a PLECS trial license

Check the PLECS documentation

PLECS

DEMO MODEL

Buck Converter with Controls in Co-Simulation

Template for co-simulations of PLECS with other simulation tools

Last updated in PLECS 4.7.1

http://www.plexim.com


Buck Converter with Controls in Co-Simulation

1 Overview

This demonstration shows the implementation of a digital controller for a simple buck converter. The
controller block uses a configurable subsystem that can be toggled between a co-simulation with an ex-
ternal tool and a discrete digital control with a Z-domain controller. The latter implementation is al-
ready known from the demo model “Buck Converter with Digital Controls”. The implementation of the
controller block is accessible by looking under the mask (Ctrl+U).

Note This model contains model initialization commands that are accessible from:
PLECS Standalone: The menu Simulation + Simulation Parameters... + Initializations
PLECS Blockset: Right click in the Simulink model window + Model Properties + Callbacks +
InitFcn*

2 Model

Figure 1 shows a schematic of a buck converter using a MOSFET. The circuit is clocked with a fixed
frequency of 100 kHz. The output voltage of the converter is regulated to the voltage reference by a
proportional-integral-derivative (PID) controller. The controller is configured as a discrete digital con-
troller or as a co-simulation with Python. The configurations for co-simulation will be shown in the fol-
lowing sections.

15

Vref

+−

V:	28 R:	3V

A

FET
D

L:	50e-6

C:	500e-6

Controller

Verr s

Figure 1: Buck converter with configurable digital controls.

2.1 Discrete Digital Control

This discrete proportional-integral-differential (PID) control method uses a Z-domain controller. While
the controller operates with a fixed sampling time of 10µs, the PWM block is still evaluated with a vari-
able time step solver.

2.2 Co-Simulation

This implementation of the co-simulation runs as a C-Script in PLECS. In this case, the co-simulation is
done with an external Python script buck_converter_with_co_simulation.py that runs the controller.
At each clock of 100 kHz, PLECS writes the voltage error signal Verr to the file outputPLECS.txt and
deletes the file outputPyhton.txt to let Python know that PLECS is done. Python reads the value, up-
dates the PID controller parameters, and writes a PWM pattern with a time resolution of 7.5ns. This
may be a realistic resolution for an FPGA. The Python script deletes the outputPLECS.txt file to tell
PLECS that Python is done. PLECS reads the file outputPython.txt and simulates until the next clock
cycle is reached. An integer is added to the end of each file to represent the simulation step. This en-
sures that no incorrect files are read and avoids any wait-statements. Detailed explanations are given
in Sections 4.2 and 5.

www.plexim.com 1

http://www.plexim.com


Buck Converter with Controls in Co-Simulation

The Python code is derived from the generic C code generated from the discrete digital control configura-
tion using the PLECS Coder.

3 Simulation

While the simulation of the discrete digital control can be run like all other PLECS simulations, the co-
simulation can only be activated through the simulation scripts (Simulation + Simulation scripts...).

Note This only works if your operating system is able to run Python scripts directly from the console!
Make sure that the wait-statement on line 9 is long enough to start the Python script.

Alternatively, the Python script buck_converter_with_co_simulation.py can be started with any suit-
able runtime environment. To do this, first start the Python script and then the simulation script with
line 9 deactivated.

The simulation results show similar behavior and differ only in the evaluation of the PWM block. While
the Python implementation runs with a fixed time step of 7.5ns, the PLECS PWM block runs with a
variable time step. These small differences are particularly visible when a transient occurs, as shown
in Fig. 2.

Inductor	current

PWM

Output	voltage

C
ur
re
nt
	(A

)

0

5

10

s

0.0

0.5

1.0

×	1e-3
Time	(s)

1.4 1.5 1.6 1.7

Vo
lt
ag
e	
(V
)

11

12

13

:	Co-Simulation
:	Discrete	Digital	Control

:	Co-Simulation
:	Discrete	Digital	Control

:	Co-Simulation
:	Discrete	Digital	Control

Figure 2: Load change in the simulation. Since the discrete digital control uses a variable time step for
the PWM generator, a small discrepancy to the PWM generation with fixed time step is visi-
ble in the co-simulation.

4 Overview Templates

The following sections provide simple templates for co-simulating with PLECS. A total of three dummy
examples are shown, two in Python and one in ModelSim. This concept can be adapted to any conceiv-
able software capable of writing data to a file, such as FPGA or FEM simulators.

www.plexim.com 2

http://www.plexim.com


Buck Converter with Controls in Co-Simulation

4.1 Model

The PLECS model consists mainly of a C-Script where the communication with another simulation tool
is handled. This communication channel is realized by writing .txt or .csv files. This very simple way
of communicating can be easily adapted for different simulation tools. However, when increasing the
length of the simulation interval it needs to be considered that this communication scheme is very slow.

Sine	Wave Scope

Co-Simulation	with	Python

outin

Figure 3: Main schematic of PLECS model

Note This model contains model initialization commands that are accessible from:
PLECS Standalone: The menu Simulation + Simulation Parameters... + Initializations
PLECS Blockset: Right click in the Simulink model window + Model Properties + Callbacks +
InitFcn*

4.2 Simulation: TimesTwo with Python

This co-simulation focuses on synchronization with Python and PLECS. A signal from PLECS is read
into Python, multiplied by 2 and sent back to PLECS. The co-simulation is started using the simulation
scripts (Simulation + Simulation Scripts...) or manually by running co_simulation.py in the demo
model folder and then starting the PLECS simulation.

The Python script runs following steps:

1 The Python script creates a dummy file outputPython_0.txt

2 Python then waits until the file outputPython_0.txt is deleted by PLECS

3 Python reads outputPLECS_1.txt

4 Python multiplies the value by two

5 Python writes the result to outputPython_1.txt

6 Python deletes the outputPLECS_1.txt file so PLECS knows it can read outputPython_1.txt

7 Goto 2 (the index number is toggling between 2 and 3 in order to avoid an overflow)

In parallel PLECS makes the following steps:

1 PLECS checks if outputPython_0.txt exists

2 PLECS runs one time step

3 PLECS creates a file outputPLECS_1.txt with the signal from the Sine Wave block

4 PLECS deletes the file outputPython_0.txt so that Python notices that it is allowed to read output-
PLECS_1.txt.

5 PLECS waits until Python deletes the file outputPLECS_1.txt

6 PLECS reads the file outputPython_1.txt and continues with the simulation

7 Goto 2 (the index number is toggling between 2 and 3 in order to avoid an overflow)

www.plexim.com 3

http://www.plexim.com


Buck Converter with Controls in Co-Simulation

Figure 4: Flow diagram of the co-simulation between Python and PLECS.

Sine	Wave	Input/Output

Time	(s)
0.0 0.2 0.4 0.6 0.8 1.0

-2

0

2
PLECS	Input
Python	Output

Figure 5: Result of co-simulation. The chosen sample time of 0.005 s in the C-Script is clearly visible in
the lower plot.

4.3 Simulation: TimesTwo with ModelSim

This co-simulation focuses on synchronization between ModelSim and PLECS. ModelSim is a simula-
tion tool for testing hardware description languages such as VHDL or Verilog. This tool is included in
the Lattice Diamond software package, which can be downloaded for free. As with the co-simulation pre-
sented above, a signal is read from PLECS into ModelSim, multiplied by 2, and sent back to PLECS. To
prevent confusion, the file written by ModelSim is called modelsim.csv and the one written by PLECS is
called plecs.csv.

Setting up and running the simulation can be done with the following steps:

1 Open Lattice Diamond

2 File + New + Project...

• Next
• Set name and path
• Next
• Next (as this is only a generic testbench, FPGA type is irrelevant)
• Change to Synplify Pro and click Next
• Finish

3 File + Add + Existing File...

www.plexim.com 4

http://www.plexim.com


Buck Converter with Controls in Co-Simulation

• select tv.sv and top.sv from the demo model source folder
• save the project and close Lattice Diamond

4 Copy co_simulation_modelSim.plecs into the project folder defined above

5 Open the project again in Lattice Diamond

6 Click Simulation Wizard

• Next
• Enter “tb” as project name (tb := testbench) and click Next and Yes
• Next
• Next
• Next
• Finish

7 Simulation will start and writes “waiting for PLECS to be started...” to the ModelSim Console

8 Open the PLECS model in the project folder and start PLECS simulation

9 Co-simulation runs through and terminates after everything is done

10You can restart the ModelSim Simulation with Simulation + Restart... + OK and then click Run –
All

This co-simulation generates the same results as already depicted in Fig. 5.

5 Simulation: Pattern with Python

Both presented co-simulation templates use a communication exchange after each simulation step.
Writing to a file and reading from a file is a bottleneck and therefore this co-simulation setup is time
consuming. However, depending on the use case, this approach may not be necessary and a much larger
step size could be chosen. An example is given right at the beginning with a buck converter where an
exact PWM signal is derived for each switching period. Therefore, a pattern could be calculated in the
controller and then sent as a packet to PLECS for solution.

The co-simulation co_simulation_pattern (and co_simulation_pattern.py) is able to do this. For a
time step of 0.005 s a pattern is generated respectively loaded from the file pwm.csv. This pattern is writ-
ten in Python to the file outputPythonPattern.txt, which in turn is loaded into PLECS and executed
for the length of this pattern with the commands NextSampleHit and IsSampleHit. The sample time
setting of [-2, 0]1. Moreover, in both files ouputPython.txt and outputPLECS.txt the same signal ma-
nipulation is performed for the same time step as in the other co-simulation templates.

6 Conclusion

In this demonstration, a simple solution for how to set up a co-simulation with two different simulation
tools is shown. Furthermore, two different possibilies for selecting the necessary time steps are pre-
sented.

1The solver of PLECS Standalone is able to hit the selected point exactly with the NextSampleHit macro. Unfortunately,
the s-function interface of Simulink only offers to resolve this selected point in time with the zero crossing method. The solver may
miss a sample as this is not exactly on but only numerically close to the chosen time point. To mitigate this problem, the next time
step is chosen. This results in a maximum time shift error of 7.5ns.

www.plexim.com 5

http://www.plexim.com


Buck Converter with Controls in Co-Simulation

Sine	Wave	Input/Output

Python	Pattern	Output

-2

0

2

Time	(s)
0.0 0.2 0.4 0.6 0.8 1.0

0

0

0

0

0

0

PLECS	Input
Python	Output

Pattern:1
Pattern:2
Pattern:3
Pattern:4
Pattern:5
Pattern:6

Figure 6: Result of co-simulation with a pattern. The chosen sample time of 0.005 s in the C-Script is
clearly visible in the lower plot.

www.plexim.com 6

http://www.plexim.com


Revision History:

PLECS 4.7.1 First release

How to Contact Plexim:

+41 44 533 51 00 Phone☎
+41 44 533 51 01 Fax

Plexim GmbH Mail✉
Technoparkstrasse 1
8005 Zurich
Switzerland

info@plexim.com Email@
http://www.plexim.com Web

PLECS Demo Model

© 2002–2022 by Plexim GmbH

The software PLECS described in this document is furnished under a license agreement. The software
may be used or copied only under the terms of the license agreement. No part of this manual may be
photocopied or reproduced in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and Simulink Coder are regis-
tered trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered
trademarks of their respective holders.

mailto:info@plexim.com
http://www.plexim.com/

	Overview
	Model
	Discrete Digital Control
	Co-Simulation

	Simulation
	Overview Templates
	Model
	Simulation: TimesTwo with Python
	Simulation: TimesTwo with ModelSim

	Simulation: Pattern with Python
	Conclusion

