@ RT Box
@
@G)

DEMO MODEL

Automated Testing

Using the Robot framework with Python and PLECS and the RT Box
over XML-RPC

Last updated in RT Box TSP 2.0.4

www.plexim.com

Pl Request a PLECS and PLECS Coder trial license

Pl CGet the latest RT Box Target Support Package

Pl Check the PLECS and RT Box documentation

http://www.plexim.com

Automated Tesfing

1 Introduction

For automated test environments the RT Box can be controlled via external scripts using an XML-RPC
interface. More information on the RT Box’s XML-RPC interface can be found in the RT Box User
Manual [1]. XML-RPC is a lightweight protocol for executing functions on a remote machine. The RT
Box acts as an XML-RPC server, which processes requests sent from scripts running on another com-
puter. Many scripting languages support XML-RPC out of the box, for example Python. For test au-
tomation the XML-RPC interface can be used together with the open-source automation framework
“Robot”.

This demo shows how to set up a basic automated test for the RT Box by using the XML-RPC inter-
face of the RT Box and the Robot Framework.

1.1 Required Software and Hardware

The following section lists the needed software and hardware to fully run this automated test demo
example. Make sure to enable the XML-RPC interface in PLECS under File + PLECS Preferences...
+ General by checking the box XML-RPC interface and setting the port to 1080.

Source Files

There are three source files included with this model: a PLECS model (.plecs) and two .py Python
files. Theses files can be found in the RT Box Demo Models section of the PLECS Help Viewer.

Installing Python

For Windows and Mac operating systems, Python 3.x can be newly installed or updated from
https://www.python.org/downloads/.

Installing matplotlib and numpy

Install matplotlib by entering the following commands:
For Python 3.x:
¢ Using the Windows Command Prompt:

py -3 -m pip install -U matplotlib

If you receive an error message that the pip module is unknown, you will need to install it first, be-
fore installing matplotlib.

¢ Using the Mac Terminal:
python3 -m pip install -U matplotlib

You can use the same approach for the installation of the numpy package.

Installing Robot Framework

The Robot Framework is installed by using pip. For Python 3.x
¢ Using the Windows Command Prompt:

py -3 -m pip install -U robotframework
¢ Using the Mac Terminal:

python3 -m pip install -U robotframework

Further installation instructions can be found in the Installation instruction chapter in the official
Robot Framework User Guide [2].

www.plexim.com 1

https://www.plexim.com/sites/default/files/rtboxmanual.pdf
https://www.plexim.com/sites/default/files/rtboxmanual.pdf
https://www.python.org/downloads/
http://www.plexim.com

Automated Tesfing

Hardware

An RT Box (any version) is connected to the host computer via Ethernet is required. In addition, valid
PLECS and PLECS Coder licenses are needed. To request a trial license for these products, please
visit www.plexim.com/trial. Furthermore, you need a current Target Support Package of the RT Box
and two 37 pin Sub-D cables to connect the Analog Out interface with the Analog In interface, and
Digital Out interface with Digital In interface.

2 Robot Framework

The Robot Framework is open and extensible and can be integrated with virtually any other tool to
create powerful and flexible automation solutions. Being open source also means that Robot Frame-
work is free to use without licensing costs. Robot Framework utilizes the keyword-driven testing ap-
proach. Its capabilities can be extended by libraries implemented in Python. The Robot Framework is
hosted on GitHub where you can find further documentation, source code, and issue tracker. It runs
independent of the operating system and the core framework is implemented in Python.

The Robot Framework has a modular architecture that can be extended with user defined libraries.
Data is defined in files using the syntax shown in the example below. A file containing a set of tests
creates a suite. When executing a robot test, the framework first parses the data. It then utilizes key-

Data

---------------- Data syntax

Robot Framework

———————————————— Library API

Libraries

---------------- System interfaces

Target System

Figure 1: Modular architecture of the Robot Framework.

words to interact with the target system, i.e. the PLECS RT Box. Robot tests can be started from the
command line. As a test result you get a report and log in HTML format as well as an XML output.
These provide a complete record of the system behavior during the test. An overview of the available
keywords specific to the RT Box is given in section 7.

3 Model

The model used for demonstrating an automated test with the Robot Framework is a basic boost con-
verter, as explained in the RT Box Demo Model Boost Converter. This model has been expanded
with specific blocks for the automated test, i.e. a Programmable Value block, Data Capture blocks and
a UDP Send block.

www.plexim.com 2

https://www.plexim.com/trial
http://www.plexim.com

Automated Tesfing

3.1 Controller

The inductor current of the boost converter is regulated by a PI controller. The controller receives its
set point from a Programmable value block. Until the block receives a new value via XML-RPC, the
initial value is at its output. When a new value is received by the Programmable Value block its out-
put v changes from zero to one. This triggers the data capturing of the three Data Capture blocks.
Once the real-time simulation is started, the UDP Send block sends data over the network to the host
computer specified by its IP address.

Scopel
Vin —{ -
/\] iL :”_4_ PWM Cout 1+ Rload Cvj_ Analog
. Capture T Out
X + Analog Analog
Vin —) CV PWM Capture Vout
—PD Vout

Vin IL
Model
Settings
Electrical @_’D simTime
Model Settings Vin d simTime [>—#
iL = 4 UDP
Vout iLref } Send
UDP Send1
Reset Controller
eset Contro rigger |>
: A
simMode . simTime > £
iLref __:|_>[> N M}» 0%(L ol o . Data
Y ? : ' iL Dl o Capture
I o pliref © Capture
. >l Vsw’ P Vsw*
Prog. d IL D > PWM _ y;
Value v } trigger »Vin Vout Out - Data
Analog o Capture
Valuel In Pl Controller D PWM Out
Capture2
Vin' .
IL [>—{ XD
Analog Analog /—] o % 5 5
In In = L :/. Data
Scope Capture
Vout'
Capture3

Figure 2: Boost converter plant and controller model.

4 Avutomated Test with Robot Framework

In this section the keyword driven test for the boost converter from section 3 is explained. A Robot
Framework data file is divided into different sections as listed below:

* Variables: Defining variables that can be used elsewhere in the test data.

¢ Settings: Importing self-made test libraries.

¢ Keywords: Creating user keywords from existing low-level keywords.

¢ Test Cases: Creating test cases from existing keywords (low-level or defined in section “Keywords”).

The sections mentioned above are identified by their respective header row, e.g. *** Variables ***,

www.plexim.com 3

http://www.plexim.com

Automated Tesfing

4.1 Variables

In the “Variables” section one can define variables that can then be used elsewhere in the test data
file. In this demo the RT Box host name, the IP address of the host computer, the sample time of the
UDP block, the number of signals send over UDP and the header of the created .csv file as well as the
model name are defined as variables.

*** Variables ***

${RTBOX}= RTBox.local.

${HOST_PC_IP_ADDRESS}= 10.0.0.216

${UDP_SAMPLE_TIME}= ${0.001}

${UDP_signal width}= ${5}

${UDP_HEADER}= [time, Vin (V), Vout (V), iL (A), iLref (A)]
${MODEL_NAME}= boost_converter

4.2 Settings

The “Settings” section is used to import test libraries that contain specific low-level keywords. In this
example the RT Box specific library has to be imported by using the physical path to the library file.
The path is always relative to the directory where the current test data file is situated. In addition, a
second library (boost_converter.py) with model specific keywords is imported.

*** Settings ***
Library ./PlecsXMLRPC.py
Library ./boost_converter.py

Note Further project specific low-level keywords can be added in a separate library. This library can
then be imported in the “Settings” section.

4.3 Keywords

The Keywords section is used to define new keywords based on already existing low-level keywords.
This is useful to group several subtasks into bigger task. In this demo, the keyword Compile and up-
load is formed based on the existing low-level keywords rtBoxSetupServer, plecsGenerateCode and
rtBoxUpload.

*** Keywords ***
Compile and upload

[Arguments] ${modelName} ${subsystemName} &{codegenVars}
rtBoxSetupServer ${RTBOX}
plecsGenerateCode ${modelName} ${subsystemName} &{codegenVvars}

rtBoxUpload ${CURDIR}${/}${modelName} ${subsystemName}

Therefore, by executing the new keyword Compile and upload first the XML-RPC connection to the
RT Box is initialized, then code is generated from the specified model and once this is done, the .elf file
is automatically uploaded to the RT box defined by its host name.

www.plexim.com 4

http://www.plexim.com

Automated Tesfing

4.4 TestCases

The different test cases defined in this section are always executed one-by-one and execution starts
from the top-level test case. Normally the execution of the current test case ends if any of the key-
words fails or if all keywords in the test case are run in a sequence. In this demo, the following test
sequence is executed:

*** Test Cases ***
Load profile and Data Logging
plecsLoadModel ${MODEL_NAME}
Compile and upload ${MODEL_NAME} Plant_and_Controller
Ts_udp=${UDP_SAMPLE_TIME} host_PC_IP_address=${HOST_PC_IP_ ADDRESS}
simMode=${0}
plecsGetCircuitBitmap Plant_and_Controller
rtBoxBackgroundLogging ${True} ${UDP_signal width} ${UDP_SAMPLE_TIME}
background_log.csv ${UDP_HEADER}
${value}= rtBoxBackgroundLoggingEnabled
rtBoxStart
sleep 2
rtBoxSetvalue Valuel 90.0
${time}= rtBoxGetValue Capturet
${iLref}= rtBoxGetValue Capture2
${iL}= rtBoxGetValue Capture3
plotData ${time} ${iLref} iLref time (s) current (A)

current step response True - r
plotData ${time} ${iL} iL time (s) current (A)
current step response False - b
rtBoxBackgroundLogging ${False}
rtBoxStop

¢ First, the model is opened, compiled and uploaded on the RT box defined in the variable ${RTBOX}.
With the optional ’optStruct’ argument of the plecsGenerateCode keyword different values are
passed to the respective parameters in the model file.

¢ Afterwards, by using the plecsGetCircuitBitmap keyword, a bitmap of the actual circuit running
on the RT Box is logged to the report created at the end of the automated test.

¢ Before the real-time simulation on the RT Box is started, the data logging over UDP is enabled.
This is achieved by setting the rtBoxBackgroundLogging keyword to True and initializing it with
the correct parameters.

* Once the background logging is enabled, the real-time simulation on the RT Box is started by using
the rtBoxStart keyword.

¢ After a pause of 2 seconds, the output value of the Programmable Value block with the name
“Valuel” is changed to 90.0. This triggers the data capturing of the three Data Capture blocks in
the model.

* The captured data is read with the rtBoxGetValue keyword.
* Once the data is received on the host computer, it is plotted and appended to the test report.
¢ Finally, the UDP background logging is disabled and the simulation on the RT Box stopped.

4.5 Launch a Robot Test File

The easiest way to execute of a Robot Framework test is by using a console in the working directory. A
single file can be executed by typing the following line in the console:

robot filename.robot

where “filename” is referring to the actual name of the .robot file that you want to run.

www.plexim.com 5

http://www.plexim.com

Automated Tesfing

5 Simulation

Before launching the test, modify the variables (${RTBOX} and ${HOST_PC_IP ADDRESS}) in the
boost_converter.robot to match your setup. Modify the file by using an suitable text editor. The
variable ${RTBOX} refers to the host name of your RT Box. The variable ${HOST_PC_IP_ADDRESS} has
to match the IP address of your computer running PLECS and the Robot Framework.

*** Variables ***
${RTBOX}= RTBox.local.
${HOST_PC_IP_ADDRESS}= 255.255.255.255

Before you launch the Robot Framework test, you have to start PLECS on your computer. Once
PLECS has started, the automated test is executed by typing

robot boost_converter.robot

in the console. Please note, that the terminal has to be started on the current working directory. Dur-
ing the test, progress is indicated by dots every time the execution of a keyword is finished success-
fully. Once the test is finished either “Pass” or “Fail” is displayed in the console for every test case and

Boost Converter Load Profile
1 critical test, 1 passed, @ failed
1 test total, 1 passed, @ failed

/Users/lino/Documents/svn_demo_models/models/exploratory/t5080_automated_testing_framework_with_robot/output.xml
/Users/lino/Documents/svn_demo_models/models/exploratory/t5080_automated_testing_framework_with_robot/log.html
with_robot/report.html

Figure 3: Output in the console after the automated test.

a log file and a HTML report file are created in the current working directory. The report.html file
can be opened by your standard web browser. Browse in the report to see the results of the individ-
ual keywords. The keyword rtBoxBackgroundLogging has created a .csv file in the working directory.
This file contains the signal values of the received UDP data evenly spaced by the used sample time.
A plot with the captured data of the three Data Capture blocks is appended to the report.html file, as
shown in Fig. 4.

6 Conclusion

This demo model demonstrates how to run an automated test with the Robot Framework on the RT
Box. During an automated test, all relevant signals can be logged to the host computer by using UDP
initiated by the rtBoxBackgroundLogging keyword. After the test run, a comprehensive report file is
created automatically by the Robot Framework. You can open this test report with any web browser.

7 Robot Framework Library for the PLECS RT Box

Libraries provide the actual automation and testing capabilities to Robot Framework by providing
low-level keywords. Several standard libraries are bundled with the framework, and there are sep-
arately developed external libraries to interact with the dedicated target system, i.e. the PLECS RT
Box. Hereafter, an overview of the available keywords to interact with the PLECS RT box is shown.
All arguments given in italic are optional.

www.plexim.com 6

http://www.plexim.com

Automated Tesfing

current step response

—— iLref
— iL

100

90 1

80 1

current (A)

704

60

50 1

2.006 2.007 2.008 2.009 2.010 2.011 2.012 2.013

time (s)

Figure 4: System response to current reference step captured on the RT Box.

Overview of XML-RPC commands

Keyword Arguments Return Value
plecsLoadModel path
plecsGenerateCode modelname, subsystemName,

rtboxType, optStruct
plecsGetCircuitBitmap subsystemName
rtBoxSetupServer rtBoxName
rtBoxStart waitForTrigger
rtBoxStop
rtBoxUpload modelName, subsystemName
rtBoxReboot
rtBoxGetStatus identifier struct
rtBoxGetVersion identifier struct
rtBoxGetHostname string
rtBoxQuerySimulation identifier struct
rtBoxQueryCounter identifier struct
rtBoxResetCounter
rtBoxGetLEDs list
rtBoxSetValue path, value
rtBoxGetValue path triggerCount struct
rtBoxCaptureTriggerCount path
rtBoxWaitForTrigger path, timeout

www.plexim.com

http://www.plexim.com

Automated Tesfing

rtBoxIsRunning bool
rtBoxGetDataCaptureBlocks list
rtBoxGetProgrammableValueBlocks list
rtBoxBackgroundLogging enable, signalWidth, sam-

pleTime, fileName
rtBoxBackgroundloggingEnabled

plecsLoadModel ’path’

opens the model defined by its relative path in respect to the current working directory.

plecsGenerateCode ’modelName’ ’subsystemName’ ’rtboxType’ ’optStruct’
initiates the code generation of the model defined by the modelName and optionally the subsystem-
Name. The optional argument rtboxType can be used to define a target different to RT Box 1. Valid en-

tries for this argument are: RT Box 1, RT Box 2, RT Box 3. The struct optStruct is used to generate
code for different parameter values without having to modify the model file.

plecsGetCircuitBitmap ’subsystemName’

adds a bitmap of the model to the test report automatically generated by the Robot Framework. Op-
tionally, also a bitmap of a circuit in a subsystem can be created by providing the subsystemName.

rtBoxSetupServer ’rtBoxName’

establishes an XML-RPC communication to the RT Box defined by its hostname.

rtBoxStart ’waitForTrigger’
starts the execution of the real-time simulation on the RT Box. With the optional argument waitFor-
Trigger the start of the real-time simulation can be delayed until it receives the start-trigger over SFP.

The waitForTrigger argument is only useful if the startup is synchronized over SFP with another RT
Box.

rtBoxStop

stops the execution of the real-time simulation on the RT Box.

rtBoxUpload ’modelName’ ’subsystemName’

loads a executable (ELF file) on the RT Box. The .elf file can be generated by using the plecsGener-
ateCode keyword explained above.

rtBoxReboot

reboots the RT Box. During the reboot-process, the RT Box will be non-responding.

www.plexim.com 8

http://www.plexim.com

Automated Tesfing

rtBoxGetStatus ’identifier’
returns a struct containing the RT Box temperature, fan speed, the application log and the model
timestamp. With the optional argument identifier, one can specify a single return value out of the

struct. Valid values for the identifier argument are:

"temperature', 'fanSpeed', 'logPosition', 'applicationLog','clearLog', 'modelTimeStamp'

rtBoxGetVersion ’identifier’

returns a struct containing the RT Box serial number, the RT Box revision version, the CPU serial
number, the build number of the firmware running on the RT Box including the date of the build,

the firmware version, the FPGA version number, the actual IP address and the RT Box MAC address.
With the optional argument identifier one can specify a single return value out of the struct. Valid val-
ues for the identifier are:

‘board', 'boardRevision','cpu', ' firmwareBuild', 'firmwareVersion', 'fpgaVersion',
"ipAddresses', 'mac'

rtBoxGetHostname

returns the name of the RT Box as a string.

rtBoxQuerySimulation ’identifier’

returns a struct containing the version number of the RT Box target support package, the name of the
model running on the RT Box, the actual model time stamp, and the discretization step size of the
model running on the RT Box. With the optional argument identifier one can specify a single return
value out of the struct. Valid values for the identifier are:

‘applicationVersion', 'modelName', 'modelTimeStamp', 'sampleTime’

rtBoxQueryCounter ’identifier’
returns a struct containing the maximum cycle time of the model running on the RT Box, the model
time stamp and the current cycle time. With the optional argument identifier one can specify a single
return value out of the struct. Valid values for the identifier on an RT Box 1 are:

‘maxCycleTime', 'modelTimeStamp', 'runningCycleTime'

For RT Box 2 and 3, the following values are permissible:

‘maxCycleTimel1', 'maxCycleTime2', 'maxCycleTime3', 'modelTimeStamp',
‘runningCycleTimel', 'runningCycleTime2', 'runningCycleTime3"

The index number (1, 2 and 3) refer to the respective core on the RT Box 2 and 3.

rtBoxResetCounter

resets the maximum cycle time value on the RT Box.

www.plexim.com 9

http://www.plexim.com

Automated Tesfing

rtBoxGetLEDs
returns a struct containing the status of the four LEDs on the front panel of the RT Box 1. For each

LED the return value is either '1’ if the LED is lit or ’’ if the LED is off. This keyword can only be
used on the RT Box 1.

rtBoxSetValue ’path’ ’value’
sets the output of the Programmable Value block indicated by path. The parameter path is the path of

the block relative to the code generation subsystem. The parameter value must be an XML-RPC array
where the number of elements corresponds to the width of the output signal.

rtBoxGetValue ’path’ ’triggerCount’

returns the last filled data buffer from the Data Capture block indicated by path. IF specified, the key-
word waits until the sample buffer has been filled the amount of times given in the optional argument
triggerCount.

rtBoxCaptureTriggerCount ’path’

returns how many times the sample buffer of the Data Capture block indicated by path has been
filled.

rtBoxWaitForTrigger
rtBoxIsRunning

returns True if the real-time simulation is running on the RT Box.

rtBoxGetDataCaptureBlocks

returns a list of all Data Capture blocks in the current model, with path.

rtBoxGetProgrammableValueBlocks

returns a list of all Programmable Value blocks in the current model, with path.

rtBoxBackgroundLogging ’enable’ ’signalWidth’ ’sampleTime’ ’fileName’

enables the background logging during an automated test with the Robot Framework if the argu-
ment enable is set to True. The background logging keyword starts a background thread that sets up
a UDP socket that is listening on port 52345. In order to make the background logging work, there
must be at least one UDP block in the model file. In addition, the remote IP address configured in the
UDP send block has to match the IP address of the host PC. Always use the port number 52345 for
the background logger. The argument signalWidth has to match the number of signals connected to
the UDP send block in the PLECS model. The same is true for the argument sampleTime. The fastest
allowed sample time is 1 ms. If the keyword is used to disable the background logger by setting the
argument enable to False, all other arguments are not required.

rtBoxBackgroundloggingEnabled

returns True if the background logging is enabled. If not, the keyword returns False.

www.plexim.com 10

http://www.plexim.com

Automated Tesfing

References

[1]1 RT Box User Manual, Plexim GmbH, Online: https:/www.plexim.com/sites/default/files/rtboxmanual.pdf

[2] Robot Framework Foundation, Robot Framework User Guide, Version 3.2.1, [Online]. Available:
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html. [Accessed:
June. 12, 2020].

www.plexim.com 11

https://www.plexim.com/sites/default/files/rtboxmanual.pdf
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
http://www.plexim.com

Revision History:

RT Box TSP 2.0.4 First release

How to Contact Plexim:

+41 44 533 51 00 Phone
+41 44 533 51 01 Fax
Plexim GmbH Mail

Technoparkstrasse 1
8005 Zurich

Switzerland

info@plexim.com Email
http://www.plexim.com Web
RT Box Demo Model

© 2002-2022 by Plexim GmbH

The software PLECS described in this document is furnished under a license agreement. The software
may be used or copied only under the terms of the license agreement. No part of this manual may be
photocopied or reproduced in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and Simulink Coder are regis-
tered trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered
trademarks of their respective holders.

mailto:info@plexim.com
http://www.plexim.com/

	Introduction
	Required Software and Hardware

	Robot Framework
	Model
	Controller

	Automated Test with Robot Framework
	Variables
	Settings
	Keywords
	Test Cases
	Launch a Robot Test File

	Simulation
	Conclusion
	Robot Framework Library for the PLECS RT Box

