H-Bridge Converter

Last updated in RT Box Target Support Package 1.8.3
1 Overview

This RT Box demo model features a current-controlled H-bridge circuit powering an inductive load. The model is split into two distinct subsystems called “Plant” and “Controller”. The plant contains an H-bridge converter with inductive load, and the controller employs a proportional-integral (PI) current control scheme. These subsystems can then be independently built on the PLECS RT Box either for Hardware-in-the-loop (HIL) testing of an external controller or for rapid control prototyping (RCP). The following sections provide a brief description of the model and instructions on how to simulate it.

Real-time execution on the RT Box requires the model to execute using a fixed-step solver. The discretization step size parameter specifies the base sample time of the generated code and is used to discretize the physical model and control domain state-space equations. The execution time represents the actual time it takes to execute one discrete step of the PLECS model on the RT Box hardware. The chosen discretization step sizes and average execution times for each subsystem in this demo model are shown in Tab. 1.

Table 1: Discretization step size and average execution time of real-time models with two RT Box 1

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Discretization Step Size</th>
<th>Average Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant</td>
<td>$2 \mu s$</td>
<td>$1 \mu s$</td>
</tr>
<tr>
<td>Controller</td>
<td>$100 \mu s$ ($f_{sw} = 10 \text{ kHz}$)</td>
<td>$0.6 \mu s$</td>
</tr>
</tbody>
</table>

1.1 Requirements

To run this demo model, the following items are needed (available at www.plexim.com):

- Two PLECS RT Boxes and one PLECS and PLECS Coder license
- The RT Box Target Support Library
- Follow the step-by-step instructions on configuring PLECS and the RT Box in the Quick Start guide of the RT Box User Manual.
- Two 37 pin Sub-D cables to connect the boxes front-to-front.

Note that this demo model is targeted at two RT Boxes application, with one running the Plant and the other running the Controller. In this way, the execution time of each real-time target is minimized. Besides, the setup can easily transition to a HIL or RCP test later on.

However if the user has only one RT Box available, please check the corresponding models targeted for one RT Box application. In this case, two 37 pin Sub-D cables are still needed to connect in front Analog Out interface with Analog In interface, and Digital Out interface with Digital In interface.

- For RT Box 2 and 3, by default the multi-tasking feature is enabled in this demo. “Controller” part is circled with a Task frame block, and runs in one core. The rest of the circuit on the schematic belongs to the “Base task”, and runs in another core. In this way the computational effort is split onto different cores. Please check the default setting under Scheduling tab of the Coder options... window.
- For RT Box 1, multi-tasking is disabled since there is only one CPU core available for calculating the model, which includes both Plant and the Controller.

Note This model contains model initialization commands that are accessible from:

PLECS Standalone: The menu Simulation + Simulation Parameters... + Initializations

PLECS Blockset: Right click in the Simulink model window + Model Properties + Callbacks + InitFcn*

2 Model

The top level schematic contains two separate subsystems representing the controller and plant models, as shown in Fig. 1. Both subsystems are enabled for code generation from the Edit + Subsystem + Execution settings... menu. This step is necessary to generate the model code for the RT Box.

![Figure 1: Top level schematic of the plant and the controller subsystems](image)

2.1 Power Circuit

The power circuit, shown in Fig. 2, is supplied by a DC source voltage of $V_{dc} = 24$ V. The H-bridge is composed of two IGBT Half Bridge power module components, powering an inductive load. The pulse-width modulated (PWM) switching signals are obtained from the PWM Capture block of the PLECS RT Box library. The modeling of the power module components and the sub-cycle averaged handling are described in the work of [1]. The measurements of DC input voltage and output inductor current are sensed and exported out of the subsystem via Analog Out blocks from the PLECS RT Box library. The discretization step size of the plant subsystem is set to 2 μs.

![Figure 2: Power circuit of the H-Bridge with inductive load](image)

Scaling Analog Outputs

The limits on Analog input and output voltage ranges of the of the PLECS RT Box target can be set in between -10 V to 10 V from the Target tab of the Coder options... window.

However, in a typical HIL simulation, since the Analog Out values exported out of the RT Box are fed to an embedded controller, these values are scaled and offset to be within 0 V to 3.3 V, to satisfy voltage requirements of a typical embedded controller.

The sensed input voltage, V_{dc}, is scaled to be within a 3.3 V range with a scaling factor of $V_{m}K$.

$$V_{m}K = \frac{3.3}{V_{dc}}$$ (1)
The sensed inductor current, I_{o}, is scaled and offset to be within a 3.3 V range with a scaling factor of $Im \cdot K$ and an offset factor of $Im \cdot O$. These factors are calculated as follows based on the maximum and minimum current set-points I_{set_max} and I_{set_min}, respectively:

$$Im \cdot K = \frac{3.3 \cdot 2}{\text{abs}(I_{set_max}) + \text{abs}(I_{set_min})}$$ (2)

$$Im \cdot O = \frac{3.3}{2}$$ (3)

2.2 Controls

The controller subsystem, shown in Fig. 3, receives the sensed inductor current and the DC input voltage values in the Analog In blocks of the PLECS RT Box component library. These values are inversely scaled to reverse the scaling applied at the Analog Out blocks of the “Plant” subsystem. The modulator modeled in the subsystem named “Right Leg Duty-Cycle” modulates the right leg of the H-bridge circuit by sensing the DC input voltage and maintaining a fixed duty cycle to achieve 12 V. The modulator modeled in the subsystem named “Left Leg Duty-Cycle” modulates the left leg of the H-bridge based on a proportional-integral (PI) controller, as shown in Fig. 4. The sensed inductor current is compared to a setpoint that is toggled between −5 A and 5 A. This error is used for current compensation by the digital PI controller, which is equipped with anti-windup logic. For an elaborate explanation on PI controller design parameters, please refer to “Boost Converter” demo model of the RT Box Target Support Package. The outputs from the modulators are fed as a modulation index to the PWM block from the PLECS RT Box component library. The PWM Out block has been configured to be synchronized with the execution step size of the controller, which is set to the inverse of the switching frequency of 10 kHz.
3 Simulation

This model can run both, in offline mode on a computer or in real-time mode on the PLECS RT Box. For the real-time operation, two RT Boxes (referred to as “Plant” and “Controller”) need to be set up as demonstrated in Fig. 5. Please follow the instructions below to run a real-time model on two RT Boxes:

- Connect the Analog Out interface of the “Plant” RT Box to the Analog In interface of the “Controller” RT Box, and the Digital In interface of the “Plant” RT Box to the Digital Out interface of the “Controller” RT Box (e.g. using two DB37 cables shown in Fig. 5).
- From the System tab of the Coder options... window, select the “Plant” and Build it onto the “Plant” RT Box. Then, select “Controller” and Build it onto the “Controller” RT Box.
- Once the models are uploaded, from the External Mode tab of the Coder options... window, Connect to both RT Boxes and Activate autotriggering.

Figure 5: Hardware configuration for the real-time operation with two RT Boxes

The inductor current measurements can be viewed using the scope found in the “Plant” subsystem as well as the scope in the “Controller” subsystem. The inductor current reference is toggled between $-5\,\text{A}$ and $5\,\text{A}$ using the “Iset” (Pulse Generator) component of the “Controller” subsystem. These reference values can be changed on the fly, in real-time, since the “Iset” component has been added to the “Exceptions” list found in the Parameter Inlining tab of the Coder options... window, prior to building the model.

The step response of the inductor current in real-time is shown in Fig. 6. A trigger control for a desired Trigger channel can be set from the External Mode tab.

4 Conclusion

This model demonstrates an H-bridge converter with a discrete current controller that can be run in both offline mode, as well as in real-time. The model also demonstrates the Parameter Inlining feature using a current controller reference that can be changed in real-time.

References

H-Bridge Converter

<table>
<thead>
<tr>
<th>Current (A)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iset</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Io</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 6: Step response of the inductor current in real-time
Revision History:

RT Box Target Support Package 1.8.3 First release

How to Contact Plexim:

📞 +41 44 533 51 00 Phone
+41 44 533 51 01 Fax
✉ Plexim GmbH Mail
Technoparkstrasse 1
8005 Zurich
Switzerland
✉️ info@plexim.com Email
http://www.plexim.com Web

RT Box Demo Model
© 2002–2020 by Plexim GmbH

The software PLECS described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and Simulink Coder are registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.