
dx

www.plexim.com

Request a PLECS and PLECS Coder trial license

Get the latest RT Box Target Support Package

Check the PLECS and RT Box documentation

RT Box

DEMO MODEL

Demo Application for the XML/JSON-RPC Scripting In-

terface of the RT Box

Using Python and a RLC circuit in PLECS

Last updated in RT Box Target Support Package 2.2.1

http://www.plexim.com


Demo Application for the XML/JSON-RPC Scripting Interface of the RT Box

1 Overview

This demo model is aimed at demonstrating the basic usage of the XML-RPC interface of the RT Box
using a Python script. The script features basic interactions such as:

• Uploading an executable to the RT Box
• Starting a real-time simulation
• Setting a Programmable Value block
• Reading back data from a Data Capture block

Note This model contains model initialization commands that are accessible from:

PLECS Standalone: The menu Simulation + Simulation Parameters... + Initializations

PLECS Blockset: Right click in the Simulink model window + Model Properties + Callbacks +
InitFcn*

1.1 Required Software and Hardware

The following section lists the needed software and hardware to fully run this XML-RPC demo exam-
ple.

Source Files

There are two main files included with this demo: a PLECS model (.plecs for Standalone and .slx
for Blockset) and a Python script named rlc_network_scripting.py. These files can be found in the
RT Box Demo Models section of the PLECS Help Browser.

Generating an .elf File from PLECS

To generate a new executable and linking format (.elf) file, a PLECS and PLECS Coder license are
needed. To request a trial license for these products, please visit www.plexim.com/trial.

To generate an .elf file, please follow the steps below:

• Open the PLECS Standalone or the PLECS Blockset model of interest.
• Select the appropriate System from the Coder + Coder options... window. Then, from the Target

tab, select PLECS RT Box 1 as the target from the dropdown menu.
• Leave the Target Device field empty and click on the Build button. This generates an .elf file

without uploading a model to a specific target. The generated .elf file is placed within a folder
called rlc_network_scripting_codegen at the same directory as the respective PLECS model file,
by default.

For Executing a Python Script on the RT Box

Once the .elf file is generated, a license for PLECS or the PLECS Coder is no longer necessary to ex-
ecute the Python script. An RT Box connected to the host computer via Ethernet is required.

Installing Python

For Windows, Linux/UNIX, macOS, and other operating systems, Python 3.x can be newly installed or
updated from https://www.python.org/downloads/

www.plexim.com 1

https://www.plexim.com/trial
https://www.python.org/downloads/
http://www.plexim.com


Demo Application for the XML/JSON-RPC Scripting Interface of the RT Box

2 Model

The modeled electrical system is a simple RLC network, as shown in Fig. 1. A capacitor is charged by
a DC voltage source via an RL branch and its voltage and current are monitored using a Voltmeter
and Ammeter, respectively. The target of this application is to find the maximum voltage that occurs
during the transient when an input voltage step is applied.

Input
default:	1

d
vProg.

Value

Capture1

Data
Capture

Vin

R:	R

C:	C
v_init:	0

V

L:	L

Capture2

Data
Capture

Get	Peak
Voltage

max

A

Figure 1: RLC network with scripting

3 Scripting

The operation of the RT Box can be controlled over its inbuilt XML-RPC or JSON-RPC interface. An
overview of the scripting interface is given in Fig. 2. It processes requests and sends back the required
data using Extensible Markup Language (XML) or JavaScript Object Notation (JSON). XML/JSON-
RPC are supported by a variety of programming languages, such as Java, Python, C and MATLAB.
This particular example features basic interactions with the RT Box, such as loading an .elf file on
the RT Box, starting a simulation, and reading data from or sending data to the real-time simulation
using Python 3.x. In general such a scripting environment can be used to implement automated test-
ing procedures.

Note The XML/JSON-RPC interface has a non-deterministic latency. Therefore it is not capable to
perform time critical tasks such as control actions in closed-loop fashion, where time delay affects sta-
bility.

More information on the RT Box’s XML/JSON-RPC interface can be found in the RT Box User Manual
[1].

3.1 The Python Script

The following section explains selective parts of the Python script that is used in this demo model.

The XML/JSON-RPC socket is set up to listen for incoming data on TCP port 9998. Before executing
this script the RT Box hostname in the script must be changed from rtbox-123.local to the host-
name of the RT Box that is used to run this example. At first the necessary modules are loaded and
the model name and communication method are defined.

import socket
import time
import base64

HOST_NAME = "rtbox-123.local"

www.plexim.com 2

https://www.plexim.com/sites/default/files/rtboxmanual.pdf
https://www.plexim.com/sites/default/files/rtboxmanual.pdf
http://www.plexim.com


Demo Application for the XML/JSON-RPC Scripting Interface of the RT Box

Executable
(ELF file)

rtbox.setProgrammableValue()

rtbox.getCaptureData()

Data
Capture

Prog.
Value

► Step size 
~ 1-100us

rtbox.load()

System Core 1

Simulation Core 2

Ethernet connection

Model

rtboxhost.local

RT BOX
Analog In

Analog Out

Digital In

Digital Out

Script

XML-RPC Server

► Latency of data transmission is 
not deterministic (~10-100 ms)

► Buffer size
1-8192 samples

PLECS WEB-BASED SIMULATION SETUP

WEB SITE VISITOR
(Engineer, Student)

WEB SITE OWNER
(Company, University)

SIMULATION PROVIDER
(Plexim, Company, University)

WEB SERVER

(Microsoft/Apache)

WEB BROWSER

(Internet Explorer, Firefox, 
Chrome, Safari, Opera)

WEB SERVER

(Apache, MySQL, PHP)

PLECS web-based
simulation framework

Client side
(Javascript/CSS/

HTML)

Server side (PHP)

HTML content

AJAX

HTML

XML-

RPC

HTML

Provided by
web site owner

Provided by Plexim

PLECS

PLECS model
front end

PLECS framework

PLECS
model

Web page content

PLECS model
reference

PLECS framework
reference

HTML content

<PLECS model
reference>

<PLECS framework
reference>

PLECS
model

PLECS
model

PLECS
model

JSON
front end

file

PLECS
model

file

...

USER PC

Figure 2: XML-RPC interface of the RT Box connected to the host computer using Ethernet

ip = socket.gethostbyname(HOST_NAME)
HOST_ADDRESS = "http://" + ip + ":9998/RPC2"
MODEL_NAME = "rlc_network_scripting"
METHOD = "XML" # choose "XML" or "JSON"

Then the generated .elf file is read and uploaded to the configured RT Box depending on the selected
communication method, XML-RPC or JSON-RPC.

if METHOD == "JSON":
import jsonrpc_requests
import collections.abc # to make jsonrpc_requests usable for Python 3.10+
collections.Mapping = collections.abc.Mapping
server = jsonrpc_requests.Server(HOST_ADDRESS)

elif METHOD == "XML":
import xmlrpc.client
server = xmlrpc.client.Server(HOST_ADDRESS)

with open("rlc_network_scripting_codegen/" + MODEL_NAME + ".elf", "rb") as f:
print("Uploading executable")
server.rtbox.load(base64.b64encode(f.read()).decode())

f.closed

The following command starts the real-time simulation:

server.rtbox.start()

www.plexim.com 3

http://www.plexim.com


Demo Application for the XML/JSON-RPC Scripting Interface of the RT Box

The commands getProgrammableValueBlocks() and getDataCaptureBlocks() query the Pro-
grammable Value and Data Capture blocks that are placed in the PLECS model, respectively, as
shown in Fig. 1.

inputblocks = server.rtbox.getProgrammableValueBlocks()
outputblocks = server.rtbox.getDataCaptureBlocks()

The command setProgrammableValue() sets the value of the DC input voltage Vin from the specified
initial value of 1 V in the PLECS model to 2 V.

Vin = 2
server.rtbox.setProgrammableValue('Input', [Vin])

In the parameter window of the “Capture1” block, a rising type Trigger with a Trigger level
greater than 1 is specified. When the command getCaptureTriggerCount() reads a value greater
than 0, the command getCaptureData() reads the input voltage step response across the RLC net-
work from 1 V to 2 V.

while server.rtbox.getCaptureTriggerCount('Capture1')==0:
print("Waiting for data")
time.sleep(1)

data1 = server.rtbox.getCaptureData('Capture1')
data2 = server.rtbox.getCaptureData('Capture2')

The following code tabulates the captured data and stops the real-time communication with the RT
Box server:

Vm = [row[0] for row in data1['data']]
Am = [row[1] for row in data1['data']]
VmMax = data2['data'][0][0]

server.rtbox.stop();

4 Simulation

The Python script can be executed in any Python IDE, or as described below. The Python script loads
the .elf executable on the RT Box and starts the real-time simulation.

Note As described in section 1.1, please generate the .elf file before running the script. In addition, the
RT Box hostname in the python script must be changed from rtbox-123.local to the hostname corre-
sponding to the RT Box used, as described in section 3.1.

Executing Python

To access the Python script from either the Windows Command Prompt or Mac Terminal, change to
the directory where the .py file is saved (i.e. inside the RT Box target support package folder). Here it
is assumed that the folder is located on the Desktop.

For example, using the Windows Command Prompt:

cd C:\Desktop\PLECS_RT_Box\demos\rlc_network_scripting

Or using the Mac Terminal:

www.plexim.com 4

http://www.plexim.com


Demo Application for the XML/JSON-RPC Scripting Interface of the RT Box

cd ~/Desktop/PLECS_RT_Box/demos/rlc_network_scripting

Then enter the following command to execute the script using Python 3.x in the Windows Command
Prompt:

py -3 ./rlc_network_scripting.py

Or using the Mac Terminal:

python3 ./rlc_network_scripting.py

The output from the Python script “rlc_network_scripting.py” should then be as follows:

Uploading executable
Starting executable
Real-time simulation running
Available input blocks are:
['Input']
Available output blocks are:
['Capture1', 'Capture2']
Setting Vin as 2.00V
Waiting for data
Stopping executable
Real-time simulation stopped
Max value of Vm = 2.54V

5 Conclusion

This model demonstrates the basic working principle of the XML/JSON-RPC interface of the RT Box,
including the Programmable Value and Data Capture blocks from the PLECS RT Box component li-
brary.

6 Appendix

To view the Voltmeter and the Ammeter readings captured by “Capture1” block of Fig. 1, matplotlib,
a freely available 2D plotting library for Python can be used. Please refer to the additional Python file
named rlc_network_scripting_matplotlib.py included in the folder of this demo.
Fig. 3 displays the capacitor voltage and current waveforms when the input voltage of the RLC net-
work is changed from 1 V to 2 V.

Installing matplotlib

Install matplotlib by entering the following commands:
Using the Windows Command Prompt:

py -3 -m pip install -U matplotlib

If you receive an error message that the pip module is unknown, you will need to install it first, before
installing matplotlib:

py -3 -m pip install -U pip

Using the Mac Terminal:

python3 -m pip install -U matplotlib

www.plexim.com 5

https://www.plexim.com/products/rt_box
http://www.plexim.com


Demo Application for the XML/JSON-RPC Scripting Interface of the RT Box

Python Script

The script for plotting using Python is given below:

import matplotlib.pyplot as plt
plt.close('all')
x = [i * data1['sampleTime'] for i in range(0, len(data1['data']))]
fig, ax1 = plt.subplots()
ax1.plot(x, Vm, 'b')
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Vm (V)', color='b')
ax1.tick_params('y', colors='b')
ax2 = ax1.twinx()
ax2.plot(x, Am, 'r')
ax2.set_ylabel('Am (A)', color='r')
ax2.tick_params('y', colors='r')
plt.title("Voltmeter and Ammeter Readings")
plt.show()

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
Time (s)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

V
m

 (
V

)

20

10

0

10

20

30

A
m

 (
A

)

Voltmeter and Ammeter Readings

Figure 3: Capacitor voltage and current waveforms

References

[1] RT Box User Manual, Plexim GmbH, Online: https://www.plexim.com/sites/default/files/rtboxmanual.pdf

www.plexim.com 6

https://www.plexim.com/sites/default/files/rtboxmanual.pdf
http://www.plexim.com


Revision History:

RT Box TSP 1.8.3 First release

RT Box TSP 2.2.1 Add JSON-RPC feature

How to Contact Plexim:

+41 44 533 51 00 Phone%
+41 44 533 51 01 Fax

Plexim GmbH Mail)
Technoparkstrasse 1
8005 Zurich
Switzerland

info@plexim.com Email@
http://www.plexim.com Web

RT Box Demo Model

© 2002–2024 by Plexim GmbH

The software PLECS described in this document is furnished under a license agreement. The software
may be used or copied only under the terms of the license agreement. No part of this manual may be
photocopied or reproduced in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and Simulink Coder are regis-
tered trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered
trademarks of their respective holders.

mailto:info@plexim.com
http://www.plexim.com/

	Overview
	Required Software and Hardware

	Model
	Scripting
	The Python Script

	Simulation
	Conclusion
	Appendix

