

THE SIMULATION SOFTWARE PREFERRED BY POWER ELECTRONICS ENGINEERS

Technical Specifications

►I Processor Xilinx Zynq Z-7030 CPU clock speed 1 GHz

Analog input Channels Resolution Voltage range Input type Sample rate Input impedance Protection Connector	16 16 bit -10 10 V Differential 2 Msps 1 MΩ, 24 pF Overvolt., ESD D-SUB 37 pin male
► Analog output Channels Resolution Voltage ranges	16 16 bit -10 10 V 0 10 V -5 5 V 0 5 V
Sample rate Output impedance Output current Protection Connector	2 Msps 0 MΩ ≤ 5 mA Short-circuit, Overvolt., ESD D-SUB 37 pin female
► Digital input Channels Logic levels Protection Connector	32 3.3 V (5 V tolerant) Overvolt., ESD D-SUB 37 pin male
► Digital output Channels Logic levels Output impedance Protection Connector	32 5 V, 3.3 V 250 Ω Short-circuit, Overvolt., ESD D-SUB 37 pin female
► Connectivity Ethernet High speed interconnect USB device Host PC Firmware	RJ-45, Gigabit 4 x SFP+, 6.25 Gbps per lane USB 2.0 high speed, Type A USB 2.0, Type B SD card
▶ Power supply Internal	100 240 Vac 50 60 Hz
►I Size D x W x H	31 x 25 x 10cm

PLECS RT BOX®

Hardware-in-the-Loop (HIL) Platform

Plexim's product line now includes real-time simulation hardware to provide a complete, one-stop solution for modern power electronic system development teams.

The PLECS RT Box is a state-of-the-art real-time simulator designed for HIL testing of complex power converter systems. The unit may also be scaled up for more demanding HIL applications, such as modular multi-level HVDC converters.

THE SIMULATION SOFTWARE PREFERRED BY POWER ELECTRONICS ENGINEERS

Trial license

Get a free trial license valid for 30 days!

▶ plexim.com/trial

Seminars

Participate and learn all aspects of the PLECS simulation software.

► plexim.com/events/ seminars

Training

Become an expert with training at your company. Contact us

▶ info@plexim.com

Services and support

Benefit from the expertise of our engineers.

▶ plexim.com/support

Store

Find our current price list at ▶ plexim.com/store

Conferences

Meet us at conferences worldwide.

▶ plexim.com/events

Contact

For inquiries please contact us.

- ► plexim.com/company/ contact
- ▶ info@plexim.com

Agile System Design Using PLECS

System modeling is crucial to power electronics product development. It facilitates early design decisions and formulation of system and subsystem requirements. An agile development process based on multiple short design iterations provides opportunities to learn lessons and adjust these requirements.

A system model maintained throughout the development process also serves as a virtual test bed for subsystem iterations. Developing systems using the PLECS toolchain can keep the different subsystems in sync during their respective design iterations.

SY	STEM MODELING		
MODE	EL & SOFTWARE IN-THE-LOOP (MIL/SIL)	
	PROCESSOR-IN-THE-LOOP (PI	L)	
	HARDWARE-II	N-THE-LOOP (HIL	.)
H			
KICKOTT	Des	sign Freeze	Release

Using PLECS tools with an agile design flow

"In-the Loop" testing of control software (SIL/ PIL) can be applied very early in development, minimizing risk of subsystem incompatibility. As control hardware becomes available, HIL testing can be used to increase test coverage.

The PLECS RT Box, together with the PLECS circuit simulator and PLECS Coder, provides a complete and consistent solution for system-level verification and validation of control software and hardware subsystems.

Code Generation

The PLECS Coder can generate C code from a PLECS model for execution on real-time hardware. This requires the model to be discretized to run at a fixed sample frequency. Due to the fast time constants inherent in power conversion systems, the step size typically is on the order of μ s. The ideal step size is a compromise between system model fidelity and accuracy of the simulation results.

To assist the developer with this tradeoff, the PLECS Coder supports simulating generated discretized code within PLECS before it is deployed onto the real-time hardware. This allows inspecting signal waveforms for different use cases and ensuring they are accurate enough for system testing purposes.

Specialized Switch Models

Specifically for real-time code generation, PLECS' component library includes Power Modules. These blocks implement powerstage topologies such as choppers, 2 and 3-level half bridges, and cascaded half and full bridges, all optimized for real-time simulation of models containing many switches.

Simulation Speed

The most meaningful metric when comparing the "speed" of real-time simulators is overall roundtrip latency, i.e. total time elapsed from measuring inputs to updating outputs. Delays depend on the underlying hardware topology. Several approaches exist, all with tradeoffs.

	DSP	FPGA	SOC
Performance	++	++	+
Flexibility	++	-	++
Latency		++	+

HIL hardware implementation options

The PLECS RT Box is based on an SOC, optimizing I/O latency, numerical performance and modeling flexibility. The latest generation of 16-bit ADC and DAC chips ensures excellent signal resolution. The digital capture module can resolve PWM signals at 10 ns.

Outlook

The PLECS RT Box is designed with the future in mind. With its high-speed communication interface, multiple RT Boxes can operate in parallel or in a master/slave arrangement. Such configurations leverage PLECS solver and coder technologies currently being developed, making the platform even more powerful and suitable for complex, large scale realtime simulations.

Plexim's product portfolio now covers all aspects of virtual system testing. We offer a one-stop solution with a unified user experience and the trusted power of PLECS.

