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Simple CAN Model

1 Overview

This demo features a simple model using the Controller Area Network (CAN) blocks on Texas Instru-
ments (TT) C2000 microcontrollers (MCUs) with the PLECS Coder and the TT C2000 Target Support
Package.

A CAN bus is a robust vehicle bus standard designed to allow microcontrollers and devices to commu-
nicate with each without a central host computer.

The model is split into eight distinct subsystems, corresponding to four different MCU targets, as
shown in Fig. 1. Each subsystem can be independently deployed to the corresponding TTI C2000
LaunchPad hardware. The following sections provide a brief description of the model and instructions
on how to simulate it.

Requirements

There is one CAN interface with an integrated transceiver available on each of the LaunchPad targets.
Therefore, to explore the CAN communication, this model requires any two LaunchPad targets, as de-
scribed in Section 2.

2 Model

The top level schematic contains eight separate subsystems, as shown in Fig. 1, corresponding to four
different C2000 targets. The subsystem with an extension “tx” is configured to transmit CAN mes-
sages, whereas the subsystem with an extension “rx” is configured to receive CAN messages. The
subsystems labeled “28069” are configured for the TI 28069 LaunchPad [1], the subsystems labeled
“280049” are configured for the TI 280049C LaunchPad [2], the subsystems labeled “28377S” are con-
figured for the TI 28377S LaunchPad [3] and lastly the subsystems labeled “28379D” are configured
for the TI 28379D LaunchPad [4].

Each subsystem is enabled for code generation, as indicated by the thick outer border of the subsystem
blocks. This step is necessary to generate the model code for a subsystem via the PLECS Coder. This
setting is configured by selecting the subsystem, opening Edit + Subsystem + Execution settings...
menu, and then selecting the Enable code generation option.

The generated code runs at a base sample time on the MCU or the Discretization step size. In this
model, the discretization step size of each of the subsystems is set to 100 us.

Each of the LaunchPad targets is configured to either transmit or receive CAN messages, as shown in
Fig. 2 and Fig. 3 respectively. To explore the CAN communication, choose any two desired targets; one
to transmit and the other to receive CAN messages.

CAN Port

The CAN Port block, shown in Fig. 2 and Fig. 3, sets up a CAN communication port.

The input en determines the CAN port state. Setting en to zero will force the CAN port to the bus-
off state, while setting the port to 1 allows the CAN port to transition to bus-on. If Auto bus-on is not
enabled, a bus-off condition has to be cleared by setting the enable signal to 0, and then back to 1. A
detailed description of the CAN error modes is given in the “Help” section of this block.
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Figure 1: Top level schematic of the model with four subsystems
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Figure 2: Schematic of the 28069 _tx subsystem to transmit CAN messages
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Figure 3: Schematic of the 28379D_rx subsystem to receive CAN messages

CAN Transmitting

The CAN Transmit block sends out data on a CAN bus. The data to send must be provided on the
block input d as a vectorized signal with data type uint8. The length of the transmitted CAN message
is determined by the width of the input signal (1 to 8 bytes).

The CAN Pack block generates a CAN message by packing the input signals into a byte vector, as
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shown in Fig. 4. The CAN ID field specifies the ID of the CAN message. In this demo, it is set as 0x1.
The CAN ID can be supplied as either an 11-bit value (for CAN 2.0A compliance) or a 29-bit value

(for CAN 2.0B compliance). A signal in a CAN message is defined by its data type, its byte order (Lit-
tle Endian / Big Endian) and its start bit and length within the 64-bit CAN message. A signal can

be scaled and an offset can be applied to efficiently send floating point signals as integers. The bits
within the CAN message are numbered from 0 (least significant bit of the first byte) to 63 (most signif-
icant bit of the last byte).

@® ( ] CAN signals: simple_can_model/28069_tx/CAN Pack

CAN Pack

Packs signals into a byte vector to be sent over CAN.

CAN ID:
0x1
+ Name Type Endian Start bit | Length ' Scale | Offset Min | Max Unit Comment
_ Test_uint  unsigned little (0] 15 1 (0] -inf inf
Test_digital bool little 15 1 1 0 -inf inf
Test_int signed little 16 16 1 0 -inf inf
¥+ Testfloat float little 32 32 1 0 -inf inf
Help Apply Import DBC ... Cancel -ﬂ'

Figure 4: Parameters of the CAN Pack block

There is an option to import signal definitions from a DBC (data base CAN) file by clicking the Im-
port DBC ... button. Most CAN networks are proprietary in the sense that only the Original Equip-
ment Manufacturer (OEM) has the DBC file required to decode the data. This is the case, for example
for raw CAN data in most cars, bikes, EVs, production machinery, etc.

In this demo model, we send out:

1 an unsigned integer type from bit 0 to bit 14 (15-bit length) provided by a Constant block,

2 a bool type digital signal on bit 15 provided by a Pulse Signal of 1 Hz and 0.5 duty cycle with val-
ues alternating between 0 and 1,

3 a 5Hz Triangular Wave between -5 and +5 as a signed integer type from bit 16 to bit 31 (16-bit
length),

4 a 5Hz Sine Wave with amplitude of 1 as a float type from bit 32 to bit 63 (32-bit length).

This information is stored in a total of 64 bits which corresponds to the maximum amount of data in
one package. Note that the Constant block for the first test signal is added into the Exceptions field
of the Parameter Inlining tab of Coder options... window. This means that once the model is run-
ning on the embedded target, the value can be tuned on the fly in real-time via the External Mode.

For more details on CAN transmitting, click on the "Help" button of the CAN Transmit and CAN Pack
block descriptions.
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CAN Receiving

The CAN Receive block initiates the reception of CAN messages with the given identifier (ID) on the
given CAN interface. On reception of a CAN message the data is made available on the block output
d as a vectorized signal of the provided frame length. The output v is 1 for one simulation step when
new data is received, 0 otherwise.

The CAN Unpack block decodes signals from a byte vector received over CAN into the original mes-
sage. Its CAN ID and signal definitions should be set in the exact same way as the CAN Pack block
shown in Fig. 4.

For more details on CAN receiving, click on the "Help" button of the CAN Receive and CAN Unpack
block descriptions.

Multi-tasking code

The PLECS Coder and the TI C2000 Target Support Package allow the user to generate multi-tasking
code for the TT C2000 family of MCUs. Multi-tasking code unlocks processing power for controls reg-
ulating multiple system outputs with dynamics on a range of time-scales. In this model multi-tasking
code is used since CAN Transmit block can be executed at a slower rate.

Multi-tasking code generation is configured in the Scheduling tab of the Coder + Coder options...
dialog. By changing the Tasking mode to multi-tasking and the Task configuration to specify,
the sample time for each task can be configured. The base sample time is always equal to the Dis-
cretization step size. The Sample time setting for lower priority tasks must be an integer multi-
ple of the base sample time. Up to 15 slower lower priority tasks that execute at different rates can be
specified, preserving processor time for the fastest, highest priority task in the application. For further
information, refer to the "Code Generation" section in the PLECS User Manual [6].

Blocks in the PLECS schematic are assigned to lower priority tasks using the Task library component.
In this model two lower priority tasks are defined in addition to the Base task, as seen in Fig. 2. The
Base task is executed at 100 us, the Slow task is executed at 0.01s and the Blink task is executed at
0.5s.

3 Simulation

Each subsystem can be directly converted into target specific code for the corresponding TI LaunchPad
hardware.

Note Before proceeding, ensure the DIP switch position and jumper configuration on the LaunchPad
device are correctly configured. Guidance for each LaunchPad device is provided in the “Tips for Pro-
gramming C2000 LaunchPads” section of the TT C2000 Target Support User Manual [5].

Connect the hardware

There is one CAN interface with an integrated transceiver available on each of the LaunchPad targets.
The CAN terminals on the TT 28069, TI 28377S and TI 28379D are available through the connector
J12; on TI 280049, they are available through the connector J14.

Choose any two LaunchPad targets as desired. Then, connect the CAN_H, CAN_L and GND pins of
the two CAN interfaces together using jumper wires.
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Flash the MCU

Follow the instructions below to upload the subsystems to a TI MCU.

¢ Connect the desired MCU to the host computer through a USB cable.

* From the System tab of the Coder + Coder options... window, select the MCU of interest.

¢ Next, from the Target tab, select the appropriate target from the dropdown menu. Then under the
General sub-tab, select the desired Build type.

* Then, to Build and program the MCU directly from PLECS, choose either Run from Flash or Run
from RAM as the Build configuration, then select LaunchPad as the Board type, and click Build.

Note If programmed correctly, the LED on the LaunchPad board should blink.

For advanced users who are familiar with Code Composer Studio (CCS), there is an option to Gener-
ate code into CCS project. Included with the TI C2000 Target Support package is a folder titled
projects. Within the folder there are ZIP archives containing pre-built CCS projects for each MCU.
Import the zip archive folder that corresponds to the desired target into CCS. You will notice a new
project created in your CCS workspace. Enter the location of the ${workspace _loc}/dev_28xx/cg/
folder from the CCS project into the CCS project directory field and click Build. Then, proceed to
build and debug the project as a normal CCS project. Refer to “Quick Start” section of the TI C2000
Target Support User Manual [5] for detailed step-by-step instructions.

External Mode

Once the generated code is running on the C2000 target, the user can enter the External Mode to up-
date scopes and displays in the PLECS application with real-time waveforms and change certain simu-
lation parameters. The steps below outline how to connect to the target device, with additional debug-
ging details provided in the “Start the External Mode” section of the user manual [5].

¢ First, from the System menu on the left hand side of the Coder + Coder options... window, select
the desired MCU.

* Then, from the External Mode tab, select the Target device by clicking ./~ icon next to the Target
device field.

¢ Next, click Connect and then Activate autotriggering to observe the results in the subsystem
display and scope.

The received CAN waveforms on the 28379D target are shown in Fig. 5.

Parameter Inlining

To configure parameters as tunable, open the Coder + Coder options... menu and navigate to the
Parameter Inlining tab. When a component from the schematic is dragged and dropped into the Ex-
ceptions list, tunable parameters associated with that component will be tunable during runtime.
Note this behavior depends on the Default behavior setting, as the Exceptions list specifies com-
ponents which have opposite behavior of the default setting.

In this case, the “Test_unit” input to the CAN Transmit block can be adjusted on the fly when the
model executes on the embedded target device, when connected to External Mode. Changes in the pa-
rameters will be reflected in the Scope traces and Display once they take effect.

4 Conclusion

This model explores the CAN communication with the TI C2000 TSP using a simple model.
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Figure 5: Received CAN waveforms on the 28379D target
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