‘ PLECS
“‘ Tutorial

Running PLECS Standalone Simulations from Matlab

Using the JSON-RPC interface

Tutorial Version 1.0

www.plexim.com

Pl Requesta PLECS trial license

Pl Check the PLECS documentation


http://www.plexim.com

Running PLECS Standalone Simulations from Matlab

1 Introduction

This tutorial explains how to run a PLECS Standalone simulation using Matlab® and JSON-RPC. For
this tutorial you will need:

¢ A working Matlab® installation

¢ A working PLECS Standalone installation

* An internet connection to download the latest version of the JSON-RPC client from Plexim’s GitHub
page.

The tutorial is split into three sections: Installation of the JSON-RPC client, setting up PLECS Stan-

dalone and writing the simulation script in Matlab®.

Before you begin Ensure that you have the files standalone_from_matlab.plecs, simula-
tion_script_1.m, simulation_script 2.mand simulation_script_3.m in your working directory. The
files are available together with this PDF in the tutorials section at www.plexim.com.

2 Install the JSON-RPC client

Your Task:

1 Please visit https://github.com/plexim/matlab-jsonrpc and download the latest version of the
JSON-RPC client by clicking on “Code” and then “Download ZIP”.

Extract the matlab-jsonrpc-main.zip file.

3 Open Matlab and add the folder matlab-jsonrpc-main that contains the JSON-RPC client to the
Matlab® Search Path (see for example this 1ink for an explanation on how to do this).

3 Setting up PLECS Standalone

Your Task:

Open PLECS Standalone

2 Enable the RPC interface in the PLECS Preferences: Click on File + PLECS Preferences and
enable the RCP Interface on port 1080. On MacOS the preferences can be found under PLECS +
PLECS Preferences.

3 Open the model standalone_from_matlab.plecs

The model consists of a buck converter with analog controls. More information about the model can be
found in the description of the “Buck converter with parameter sweep” demo model.

4 Simulation Script

4.1 Single Simulation

Your Task:

www.plexim.com 1


https://www.plexim.com/support/tutorials
https://github.com/plexim/matlab-jsonrpc
https://www.mathworks.com/help/matlab/matlab_env/add-folders-to-matlab-search-path-at-startup.html
http://www.plexim.com

Running PLECS Standalone Simulations from Matlab

1 Open Matlab® and create a new file called simulation_script.min the same folder as the stan-
dalone_from_matlab.plecs file.

2 In the m-file editor, write the following code:

proxy = jsonrpc('http://localhost:1080', 'Timeout', 10);

This creates a new JSON-RPC proxy object with a connection timeout of 10 seconds

3 Load the PLECS model with the following code:
path = pwd;

model name = 'standalone_from_matlab';
proxy.plecs.load([path '/' model_name '.plecs']);

The command “pwd” prints the path of the current working directory that contains the PLECS
model we want to simulate.

4 Create a simulation struct and run a simulation

simStruct = struct('Modelvars', struct('varL', 50e-6));
results = proxy.plecs.simulate(model_name, simStruct);

5 Execute the script in Matlab®.

At this stage your simulation script should look like the example solution simula-
tion_script_1.m.

4.2 Parallel Simulations

In this task we set up a parameter sweep using parallel simulations. The concept of performing the sim-
ulations is the same as for a single simulation but instead of only one set of simulation parameters we
hand over a cell array that contains the parameter sets for each individual simulation.

Your Task:

1 Create a new file called simulation_script_2.m with the following content:
proxy = jsonrpc('http://localhost:1080', 'Timeout', 10);
path = pwd;
model_name = 'standalone_from_matlab';

proxy.plecs.load([path '/' model_name '.plecs']);
simStruct = struct('ModelVars', struct('varL', 50e-6));

This is the same code as in the previous task but without the plecs.simulate command.

2 Let’s clear all traces in the Scope so that we can add later the traces of all parallel simulation runs.

proxy.plecs.scope([model_name '/Scope'], 'ClearTraces');

3 Now we create a cell array that contains the parameters for each individual simulation.

www.plexim.com 2


http://www.plexim.com

Running PLECS Standalone Simulations from Matlab

% Set value for L1 to be swept
inductorValues = 40:20:220; % in uH

% Allocate memory for cell array
simStructs = cell(size(inductorValues));

% Initialize simStruct as cell array with all values for L1
for ix = 1:length(inductorValues)
simStructs{ix}.ModelVars.varL = inductorValues(ix) * 1e-6;
simStructs{ix}.Name = ['L=' mat2str(inductorValues(ix)) 'uH'];
end

in the for loop every member of the cell array is assigned a “ModelVars” struct and a name. The
name is useful to later identify the simulation result. For example, the name can be used to label
the trace in the scope.

4 Now we use the cell array for the plecs.simulate command:

results = proxy.plecs.simulate(model_name, simStructs);

5 In the last step we use the plot function to plot one of the simulation results (simulation index 5):

plot(results(5).Time,results(5).Values);title(simStructs{5}.Name)

6 Execute the script in Matlab®.

The script runs all simulations in parallel, however, only one of the simulation results is shown in the
Scope and the Matlab® plot window. Please note at this point, that those results do not necessarily be
the same because all simulations run in parallel and it is not clear which simulation finishes first.

In the next step we create a callback function that holds the traces and post-processes the results of all
simulations.

At this stage your simulation script should look like the example solution simula-
tion_script_2.m.

4.3 Adding a Callback Function

To use the full potential of parallel simulations in the context of automated parameter sweeps, we add a
callback function to the argument of the plecs.simulate command.

Your Task:

1 Continue writing the simulation from the previous step simulation_script_2.m. At Before the
plecs.simulate command add the following code:

callback = sprintf([
"if ischar(result)\n'
' disp(["Simulation errors can be asserted in this message."]);\n'

‘else\n’'

' plecs(''scope'', ''./Scope'', ''HoldTrace'', name);\n'
: result = max(result.Values(1,:));\n'

‘end\n'

www.plexim.com 3


http://www.plexim.com

Running PLECS Standalone Simulations from Matlab

1);

This code writes a callback function in the Octave language which can be processed by PLECS Stan-
dalone after every simulation run. This is a useful tool to analyze certain key figures from each sim-
ulation run and add a parametric plot at the end of the sweep. Here only the maximum current
value is returned after the simulation. The callback function also holds a trace in the Scope so that
all results can be inspected in the PLECS Scope after the script has finished.

2 Change the call of the plecs.simulate command to:

results = proxy.plecs.simulate(model_name, simStructs, callback);

3 Now we can add a parametric plot of maximum current vs. inductance value

plot(inductorValues,results,'-*"');
title('Maximum current in A vs. Inductor Values in uH')

4 Execute the script in Matlab®.

At this stage your simulation script should look like the example solution simula-
tion_script _3.m.

5 Conclusion

In this tutorial you learned how to run PLECS Standalone Simulations from Matlab®. First a JSON-
RPC client needs to be installed and configured in the simulation script and then the Standalone simu-
lation is called over the JSON-RPC interface. The powerful feature of parallel simulations is explored at
the end of this tutorial. This feature is only available in PLECS Standalone.

www.plexim.com 4


http://www.plexim.com

Revision History:

Tutorial Version 1.0 First release

How to Contact Plexim:

+41 44 533 51 00 Phone
+41 44 533 51 01 Fax
Plexim GmbH Mail

Technoparkstrasse 1
8005 Zurich

Switzerland

info@plexim.com Email
http://www.plexim.com Web
PLECS Tutorial

© 2002-2023 by Plexim GmbH

The software PLECS described in this document is furnished under a license agreement. The software
may be used or copied only under the terms of the license agreement. No part of this manual may be
photocopied or reproduced in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and Simulink Coder are regis-
tered trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered
trademarks of their respective holders.


mailto:info@plexim.com
http://www.plexim.com/

	Introduction
	Install the JSON-RPC client
	Setting up PLECS Standalone
	Simulation Script
	Single Simulation
	Parallel Simulations
	Adding a Callback Function

	Conclusion

