‘ PLECS
“ Tutorial

Efficient PWM Generation

Modulator implementation using the C-Script block and a state machine

Tutorial Version 1.0

www.plexim.com

Pl Requesta PLECS trial license

Pl Check the PLECS documentation

http://www.plexim.com

Efficient PWWM Generation

1 Introduction

The C-Script block is not only useful for implementing mathematical and control functions, but also
for implementing state machine programs. State machine programs are useful for generating switch-
ing patterns and for sequencing controller modes. In this exercise, you will implement a state machine
program with the C-Script block that creates a symmetrical pulse width modulation (PWM) signal
with a blanking delay between switching transitions.

Using a state machine program with a variable time step setting to generate PWM is very efficient
since the PWM state machine program is only called during a switching transition. This technique

is more efficient than the standard approach of continuously comparing the modulation index with a
triangular carrier wave. With a comparator-based approach, intermediate simulations steps must be
taken around each transition point in order for the solver to determine the exact transition time of the
comparator output.

Before you begin Ensure the file test_inverter.plecs is located in your working directory. You
should also have the reference files that you can compare with your own models at each stage of the
exercise.

2 Background

PWM is commonly used for controlling inverters such as the full-bridge single-phase inverter shown in
Fig. 1. To generate the PWM waveform, a sinusoidal control signal known as the modulation index, m,
is typically compared with a triangular PWM carrier signal as shown in Fig. 2. Different PWM switch-
ing strategies and switching signals are possible, but for this exercise, the PWM output is a switching

signal in the set of [—1,0, 1] that controls all four switches in the inverter. A 1 turns on the switch pair
S1 and S4 and a —1 turns on switch pair S2 and S3. With an output of 0, all switches are off. This is a
bipolar switching strategy since the resultant output voltage is bipolar, having a value of V. or —Vj..

In a practical inverter, dead time is needed between switching transitions to ensure that physical de-
lays during the turn on and turn off of the switching elements do not overlap and cause short circuits
across the DC bus. Dead time control is achieved by waiting a finite time for one switch in the inverter
leg to turn off before the other switch in the leg is turned on.

A PWM modulator with dead time can be modeled efficiently in PLECS using a state machine that is
only called at switching transitions. For an ideal PWM modulator, only two switching transitions per
cycle are needed, and with dead time, only two additional transitions are required.

3 Exercise: Ideal P WM

In this first exercise you will implement a state machine program that generates an ideal symmetrical
PWM signal as shown in Fig. 3. For use in bipolar switching applications, the input signal is in the
range [—1, 1] and the output in the set [-1, 1].

S1 \ S3

Vae —/— Vo

o\ N\

Figure 1: Full-bridge single-phase inverter.

www.plexim.com 1

http://www.plexim.com

Efficient PWWM Generation

o

________ FAANAAAA

\
0
LU oUUOy

Figure 2: Generation of switching signal for bipolar sinusoidal PWM modulation. The PWM output
controls the full-bridge switch pairs to produce a bipolar voltage output.

Start Low High

y

to t/ tZ ts

Figure 3: Timing of a symmetrical PWM cycle.

3.1 Operation of PWM state machine

The state machine program is summarized in the state diagram shown in Fig. 4. The state diagram
comprises three states, Start, Low and High, where each state corresponds to a time instant at which
the program is called.

The PWM state machine uses a discrete-variable hybrid time setting. The fixed time step setting cre-
ates regular calls, or hits, to the C-Script block at intervals of 1/f,. This setting is used to begin the
switching cycle. The variable time step setting is used to set the transition times into the Low and
High states.

To begin with, the fixed time step hit causes the state machine to enter the Start state. In the Start
state, if the modulation index, m, is not equal to 1 or 0, the scaled modulation indices, m; and ms, are
calculated. The scaled modulation indices are transformed from the range [—1, 1] into the range [0, 1]
using:

my=(m+1)/2 (@)
mo = 1-— mi (2)
If my or ms are less than or equal to 0, the PWM output is set and the state machine program loops

back to the Start state. If m; and m, are within limits, the variable-step hit times, ¢; and ¢, are calcu-
lated as follows:

m
ty = to+ 71155 (3)
to = t1 + mot; 4)

The derivation of the hit time calculations for symmetrical PWM is graphically depicted in Fig. 7 of
Appendix A.

www.plexim.com 2

http://www.plexim.com

Efficient PWWM Generation

Figure 4: State diagram for symmetrical PWM sequence generation. The variable transition times into

the Low and High states are manually defined by setting ¢,;.. Att = 0 or in the High state,
the automatic fixed-step hit initiates the transition to the Start state.

3.2 Implementation

Your Task:

The C-Script block should be placed inside a Subsystem block to allow you to define a subsystem
parameter, labeled Switching frequency and with the variable f;, to set the PWM switching fre-
quency. You will also need to pass 1/f; to the C-Script block as a custom parameter.

The configuration settings for the C-Script block are shown in Fig. 5. Note that the Sample time
parameter is configured with a discrete-variable hybrid time setting. The fixed time setting causes
hit times at regular spaced intervals of 1/f, and the variable time setting allows you to define the
hit times for the PWM waveform transitions internally during each cycle.

To complete the configuration of the C-Script block, in the Code Declarations function map the
input to M, the output to OUT and define a variable TS of type double. In the Start function assign
the user parameter 1/f; to TS using the macro ParamRealData.

To implement the state machine in C code, you should first define a data type named state type
and the possible names for the data type. This is done by creating an enumeration in the Code
Declarations function as follows:

typedef enum {
Start,
Low,
High,
}state_type;

You can now create variables of type state type as you would with any other type, such as int

or double. You should create a variable of this type named NEXT_STATE to keep track of the next
state. Note that any variable defined in the Code Declarations function is global and therefore
persistent.

Also in the Code Declarations function, include the header file float.h, which defines the largest
theoretical machine representable number DBL_MAX, and assign this to a macro named NEVER. Also

www.plexim.com

http://www.plexim.com

Efficient PWWM Generation

a0 C-Script parameters: BipolarPWM_3/Bipolar PWM/ Bipolar PWM

Setup | Code |

Number of inputs: l— Number of outputs: 1
Number of cont. states: [0 | Number of disc. states: |1
Number of zero-crossings: 07 E Input has direct feedthrough
Sample time: m [¥ Enable runtime checks
Parameters: 1/fs

Figure 5: C-Script block configuration settings.

create a macro named DMIN to represent the smallest permissible duty cycle, and assign this to an
arbitrarily small value of 1e—6s.

7 In the Code Declarations function, you should also map a variable named STATE to Disc-
State(0). Note that the variable STATE is represented internally as a double, but can be cast as a
state_type variable in order to allow a STATE variable to be compared with the state names rather
than doubles.

8 In the Start function, set STATE to be in the Start state and initialize the internal macro NextSam-
pleHit to NEVER.

9 In the Output function, define m; and m. as double precision numbers. Also define the variables
t1 and t, as static double precision numbers. The static keyword is needed as these variables must
retain their values between Qutput function calls.

10 Implement the state machine logic in the Qutput function using the switch statement shown
below. In each state, the PWM output and the NextSampleHit macro should be set and the
NEXT_STATE defined. In the High state, set the NextSampleHit macro to NEVER to ensure that the
next call to the state machine program is from the fixed-step setting.

switch ((state_type) STATE) {
case Start:
//Calculate m1, m2. Determine NEXT_STATE.
//Calculate t1, t2. Set PWM output.
//Set NextSampleHit
break;

case Low:
break;

case High:
break;

}

11 You will need to implement some state transition logic in the Start state. If m; or m. are less than
DMIN, set the PWM output to 1 or —1 and loop back to the Start state.

12 Don’t forget to update STATE to NEXT_STATE in the Update function.

www.plexim.com 4

http://www.plexim.com

Efficient PWWM Generation

13 To test the PWM modulator, apply a 50 Hz sine wave with an amplitude of 1 to the input, and set
the switching frequency to a low value of 1000 Hz. You can set the simulation Time span to 20 ms
and leave all other simulation parameters as their defaults. Compare the PWM output with Fig. 2.

At this stage, your model should be the same as the reference model,
cscript_modulator_1.plecs.

4 Exercise: PWM with Blanking Time

In this exercise you will extend the PWM state machine from the previous exercise to include a blank-
ing time, ¢4, between the switching transitions. You will also limit the minimum high or low time of
the PWM waveform to d,;,. You will need to modify the state diagram to add blanking states, Blank1
and Blank2 before states Low and High, respectively. The hit times for the state transitions are shown
in Fig. 6.

Start Blankl Low Blank2 High

1

—> <—l‘d

-1

t() t1 tz tS t4 tx

Figure 6: Timing of a single switching cycle with blanking time ¢, between switching transitions.

Your task

1 Create new mask parameters in the subsystem labeled Dead time ratio (dr), and Minimum duty
cycle (dmin), and pass these to the C-Script block as custom parameters. Define variables of type
double named DEADTIME and DMIN in the Code Declarations and assign the user parameter dr
and dp,;, using the ParamRealData macro. Note that the custom parameter 1/f; is entered as be-
fore and mapped to TS.

2 The new on and off ratios are adjusted for dead time by subtracting the dead time ratio, dr, from
the values calculated in Eq. (1) and (2):
my =my — dr (5)

my = mg — dr (6)

3 In the event that m; > < d, the calculated value for m/ , will be negative and the hit time calcula-
tion will be incorrect. Therefore before you calculate the hit times, impose a lower limit on m/ and
mb of dm;n and an upper limit of 1 — 2dr — dyip.

4 The hit times for each state transition, graphically derived in Appendix A, are calculated using:

!
t1 =1+ %ts (7
to =t1 +drts (8
ty = ta + mbhts 9
ty =t +drt, (10)

www.plexim.com 5

http://www.plexim.com

Efficient PWWM Generation

5 Modify the state machine program to include the states Blankl and Blank2. When adding these
states to the state machine model, you should also remove the two conditional loops from the Starz
state. These are no longer needed since the duty cycles are limited above zero.

6 Set the minimum duty cycle to 0.02, the dead time ratio to 0.01 and compare the function-
ality of your modulator with the previous version. Place the modulator in the test model
test_inverter.plecs. Set the switching frequency to 25¢3 Hz and observe the inverter output
voltage and load voltage. Is there any visible change in the load voltage as you increase the dead
time ratio?

At this stage, your model should be the same as the reference model,
cscript_modulator_2.plecs.

5 Conclusion

State machine programs are useful for creating output sequences such as a PWM switching signal
with blanking time. In this exercise you learned how to generate a PWM signal with a state machine
program that is executed only at the PWM transitions. This implementation is more efficient that an
implementation based on a counter and compare program. The state machine concept is not only use-
ful for pattern generation but can easily be adapted to respond to external rather than internal events
for applications such as control system sequencing.

A Appendix: Derivation of Hit Times for Sampled PWM

Is
- - |
H’IZI
m
mi
0
1
PWM
-1
m71 ts mats

Figure 7: Timing of symmetrical PWM.

www.plexim.com 6

http://www.plexim.com

Efficient PWWM Generation

Is
A 1
mo' /\
Y
2d m 7
A
mi'
v 0
1
PWM 0
-1
m12—d ts ds (}’H2—d) ts

Figure 8: Timing of symmetrical PWM with blanking

www.plexim.com

http://www.plexim.com

Revision History:

Tutorial Version 1.0 First release

How to Contact Plexim:

+41 44 533 51 00 Phone
+41 44 533 51 01 Fax
Plexim GmbH Mail

Technoparkstrasse 1
8005 Zurich

Switzerland

info@plexim.com Email
http://www.plexim.com Web
PLECS Tutorial

© 2002-2022 by Plexim GmbH

The software PLECS described in this document is furnished under a license agreement. The software
may be used or copied only under the terms of the license agreement. No part of this manual may be
photocopied or reproduced in any form without prior written consent from Plexim GmbH.

PLECS is a registered trademark of Plexim GmbH. MATLAB, Simulink and Simulink Coder are regis-
tered trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered
trademarks of their respective holders.

mailto:info@plexim.com
http://www.plexim.com/

	Introduction
	Background
	Exercise: Ideal PWM
	Operation of PWM state machine
	Implementation

	Exercise: PWM with Blanking Time
	Conclusion
	Appendix: Derivation of Hit Times for Sampled PWM

