Power Split Hybrid Vehicle System
This PLECS demo model shows a Lithium-ion (Li-ion), battery-powered, series-parallel hybrid vehicle system. The simulation shows the startup for an electrically and mechanically coupled hybrid system.
This PLECS demo model shows a Lithium-ion (Li-ion), battery-powered, series-parallel hybrid vehicle system. The simulation shows the startup for an electrically and mechanically coupled hybrid system.
This PLECS demo model illustrates a grid-connected solar panel system with a boosted front end and a single-phase inverter back end. The boost converter is designed to operate the panel at its maximum power point (MPP). A maximum power point tracking (MPPT) algorithm is implemented to improve the performance of the solar panel under partial shading conditions. Further, the inverter is operated with an outer voltage loop to control the DC-link voltage and a synchronous regulator to maintain unity power factor.
This PLECS demo model shows a 320 kV, 200 MW high-voltage direct current (HVDC) transmission system with two modular multi-level converters (MMC) interconnecting two 110 kV high-voltage AC grids. MMCs are the prevalent type of voltage-source converter topology for HVDC applications. At high voltages the transmission of direct current can be more efficient than alternating current. The MMC is a bi-directional voltage source converter that interfaces high-voltage AC and DC power systems. It comprises a positive and negative arm for each of the three phases. Each arm further contains a set of switching submodules connected in series, the number of which can be chosen in this model to achieve the desired harmonic performance.
This PLECS demo model shows a grid-connected battery charger with cascaded AC/DC and DC/DC converters. The AC/DC converter is regulated by a digital PI controller to achieve power factor correction (PFC) and maintain the DC bus voltage at 300 VDC. The DC/DC converter is designed to provide a maximum 120 VDC output at a power rating of 1.4 kW.
This PLECS demo model shows a medium-voltage static synchronous compensator (STATCOM) system. Converters with cascaded connections are common in high-power applications such as medium-voltage drives, high-voltage direct current (HVDC) and flexible alternating current transmission systems (FACTS). These types of converters have the advantages of low switching losses and high redundancy, but require sophisticated control, e.g., cell-capacitor voltage balancing. The STATCOM’s purpose is to compensate for the reactive power required by various loads on a power system.
This PLECS demo model shows an isolated DC/DC resonant converter operated under frequency control. The output voltage of the converter is controlled by changing the switching frequency of the semiconductors. Zero-Voltage Switching (ZVS) is used to reduce switching losses, allowing the operation of the converter at higher switching frequencies.
This PLECS demo model illustrates a neutral-point clamped (NPC), three-level voltage-source inverter. The NPC topology has been adopted for high power applications as it can achieve better harmonic reduction than traditional two-level voltage source inverters and the associated control strategies help to minimize semiconductor losses. This model is designed to deliver power to a 50 Hz, 130 VRMS grid from a dynamic DC source.
Microcontrollers play an integral part in controlling modern power electronic systems. Often, for system level simulations, the peripheral modules are simplified to improve overall efficiency. In this report, efficient modeling of high fidelity peripheral models is discussed and the advantages of simulating power electronic systems with these models have been investigated in detail using PLECS.
This PLECS demo model shows the effects of measurement error and mechanical resonance on the performance of an electric vehicle system. A possible controls solution to mitigate the observed issue is provided and the overall system performance can be compared before and after the method is added.
This PLECS demo model illustrates a servo drive application, combining the PLECS electrical, control and mechanical domains. The system includes an inverter with field-oriented control that supplies a servomotor coupled to a ball screw gear. The output of the gear is attached to a slide, which holds the part that is being position-controlled for manufacturing (e.g. milling) operations.